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GEODETIC PROBLEMS AND SATELLITE ORBITS

W. H. Guier

IECTURE I

INTRODUCTORY REMARKS

The title for this series of five lectures is "Geodetic Problems
and Satellite Orbits". Clearly, when tracking satellites, our only real
knowledge that certain problems exist in the area of geodesy is through
a study of the satellite tracking data, noting that present knowledge of
geodesy is inadequate to theoretically describe and/or predict the detailed
time dependence of the received tracking data. For this reason, the
principal topic to be discussed in this series is the effect of geodetic
errors on the time dependence of satellite tracking data as received by
by a tracking station located on the surface of the Earth from a near-earth
satellite. These geodetic errors fall into two categories, geodetic errors
which effect the location of the tracking station on the surface of the
Earth and geodetic errors which effect the motion of the satellite (and
therefore its position at some given value of the time). Consequently,

subsidiary topics which shall be discussed are:

1. Methods for specifying the motion of a tracking station in
inertial space, given the usual geodetic measurements available

for a point on the earth's surface,

2. The motion of a near-earth satellite when influenced by the various

harmonics of the earth's gravity field (geopotential), and

i53



3. The functional dependence of various types of tracking data
upon the trajectories of the station and satellite in inertial

space.

These topics do not cover many problem areas relating to
satellite motion and the accurate reception and tabulation of tracking
data. ©Such problem areas, while important from the standpoint of
achieving accurate prediction of the trajectories of satellites, can
reasonable well be divorced from the geodetic problem areas. Consequently,
this series of lectures will assume a rather narrow definition of the word
geodetic problems - namely problems associated with the science of determin-
ing the shépe and size of the Earth and its gravity field.

Fundamentally, the procedure of determining the orbit of a
satellite can be considered as the process of assuming the satellite to
be under the influence of a known force field and then using the tracking
data to determine which solution to the equations of motion one should
choose. By this I mean the following. Assuming for the moment that the
forces acting on the satellite are known, an infinity of solutions to the
differential equations of motion exist until boundary conditions are
imposed - such as values for the initial position and velocity of the
satellite at some chosen epoch. The tracking data is used to determine
as accurately as possible these initial conditions. Consequently, errors
in satellite orbits can arise from errors in the forces that act on the
satellite and errors in the compuﬁed boundary conditions. Within the

area of interest of these lectures, the geopotential is considered as
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the sole source of error in the satellite forces, and tracking station
location errors the sole source in obtaining errored boundary conditions.

In principle, errors in the location of tracking stations can
be discussed entirely separate from errors in the satellite forces.
However, in practice, complete separation of the two sources of errors
cannot be made. The primary reason is that the accurate determining of
the station location depends in practice upon a knowledge of the geopotential
(near the earth's surface) and consequently errors in the geopotential
introduce errors in both the station and satellite trajectories in
inertial space. Another important reason is because, to zeroth order,
satellite tr&cking data provides information on the position and/or
velocity of the satellite relative to that of the station. Consequently,
it is frequently difficult to accurately éeparate orbit errors into those
directly related to the station prosition and those directly related to
the satellite motion.

It can be seen from the above discussion that central to the
determination of station positions and satellite orbits is an accurate
specification of the earth's gravitational force field, and I shall now
briefly discuss a representation for the gravity field of the Earth. We
chose the sign convention such that the Fforce is given by + grad U, where
U is the gravitational potential of the Earth. It is common to express

this potential as an expansion in surface harmonics 8o that:

.
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where
. 3 2
K = gravity force constant (km>/sec”),
R = mean equatorial radius of Earth (km),
= geocentric radius (km),

@ = geocentric latitude (rad),

A = geocentric longitude (rad),
and where

- m
2.2 d
)" — B,(2).
d
7z

P(2)

(1 -2

The geocentric coordinates R, ¢, and A have their origin located at the
center of gravity of the Earth. The geocentric latitude is measured
from a plane which passes through the earth's C.G. and is normal to the
earth's spin axis. The geocentric longitude is measured positive eastward
from the plane containing the spin axis and a special marker at the
Observatory in Greenwich, England - the so called Greenwich meridian.

Since the origin of this coordinate system is at the center of gravity

1

of the Earth, it follows that Jl = Cl

= Si = 0. To the accuracy that

we will consider in these lectures we may assume that there is sufficient
energy dissipation that the earth's spin axis is the principal axis of

the largest moment of inertia of the Earth and therefore we may assume

that the spin axis passes through the earth's C.G. Consequently, in the
above expansion for the geopotential we.also may take Cé = S; = 0. Finally,
to the accuracy which we shall consider, we may assume that the earth's

gravitational field is time independent and that the spin axis, equatorial
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plane, and Greenwich meridian are fixed with respect to the crust or
surface of the Earth. Except for some relatively minor considerations
when discussing the geoid, we shall not be interested in the gravitational
field below the physical surface of the Earth.

Corresponding to the geocentric coordinates R, ¢, and A there
is a natural right-handed cartesian coordinate system fixed with respect
to the Earth. This is shown in Figure 1. The Greenwich meridian is the
X-Z plane and the equatorial plane coincides with the X-Y plane.

Because of the earth's rotation it is not convenient to describe
the satellite motion in a coordinate system which is fixed with respect
to the earth's crust. A very natural coordinate system for the satellite
motion is one which has its Z-axis coinciding with the earth's spin axis
and its X'and Y axis approximately fixed relative to inertial space
(fixed relative to the celestial sphere). This inertial coordinate
system and its relationship with the earth fixed cartesian system is
shown in Figure 2. Very briefly, the inertial system is defined in the
following way.l The apparent motion of the sun around the Earth approximately
lies in a plane called the ecliptic plane. The intersection of this plane
with the earth's equatorial plane defines a line which is approximately
fixed in inertial space. We take the positive X-axis of the inertial system
as the direction of this line of intersection going from the C.G. of the
Earth in that direction where the sun crosses the equatorial plane going
from south to north. This direction is known to the astronomer as the
First Line of Aries. This coordinate system is called the True Equatorial
System of Date to denote that it is defined by the direction of the

instantaneous spin axis of the Barth and the intersection of the



instantaneous equatorial and ecliptic planes. This system experiences
small accelerations due to the fact that the earth's spin axis precesses
and nutates relative to inertial space and the apparent motion of the sun
around the Earth does not lie exactly in a fixed plane. However, for our
purposes this coordinate system is a sufficient approximation to an
inertial system and for coordinate systems which are more accurately
inertial you may refer to reference 1.

It is inevitable that other coordinate systems must be
introduced when discussing the location of a tracking station on the
surface of the Earth. This is because all surveying is done on the
surface of the Earth and it is most natural to define coordinate systems
which are surface coordinate systems. I shall now briefly discuss the
various geodetic coordinates reqﬁired to locate a tracking station
referring you to references 2 and 3 for details.

A surface from which a natural surface coordinate system can be
developed is one of the equipotential surfaces for the Earth. If this
equipotential surface is chosen to coincide with mean sea level (average ,
height of the sea surface when corrected for tides, weather effects, etc.)
the surface is known as the geoid. This surface, by definition, is

everywhere normal to the direction of the force of gravity, and all

measurements of relative height are most naturally referenced to the geoid.

When over land the geoid is not measurable in as straightforward a manner
as one might think. Clearly many areas will have the geoid located below
the physical surface of the Earth. When this is the case it is necessary
to correct for the gravitating mass that is above the geoid when using

gravity measurements to determine the geoid. Correcting for this mass
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inevitably involves assumptions as to the density, inhomogeneities, etc.,
for the crustal mass, and for clarity one refers to the co-geoidg’3

rather than the geoid when discussing the determination of an equipotential
surface over land masses. To the accuracy required for these lectures
however we may assume that the geoid and co-geoid are coincident and,
consistent with the previous assumptions, we may assume that the geoid

is time independent.

The shape of the geoid is sufficiently complex that it is
inconvenient to use in computations. For this reason it is common to
use an oblate spheroid (ellipse of revolution) which approximately
follows the geoid in specifying the geodetic coordinates of a station.
Figure 3 shows a meridianal section of a spheroid with the pertinent
quantities used to define the spheroid and the coordinates of a point on
the surface of the spheroid. A spheroid, being an ellipse of revolution,

has its surface defined when its semi-major axis and eccentricity are

defined. In practice the flattening, f, is given instead of the eccentricity

and is related to the eccentricity by the formula: —%— =1 1 - €2. The

latitude and longitude of a station are always referred to the spheroid.
The geodetic latitude, @G’ is defined by dropping a perpendicular to the
surface of the spheroid and noting the angle of iIntersection of this normal
with the equatorial plane. Consequently, the cartesian coordinates CG’ ZO

in the meridian containing the station are (see Figure 3).

¢ = 2 = xi + Yi ,
2 2 !
Vi+(1-1/£)? ten Py
Z =(1- l/f)2 €. tan o
o G G -
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The longitude is, of course, related to the cartesian coordinates
X_, Y by Ag = tan™t Y_/X_.

In specifying the orientation of a spheroid with respect to the
spin axis and center of gravity of the Barth the intent is normally to
have the semi-minor axis coincide with the spin axis and the semi-major
axis lying in the equatorial plane with the center of the spheroid at the
center of gravity of the Earth. In practice the specification of this
orientation is done at the surface of the Earth at a point which is
denoted as the datum point. This implies that the spheroid is oriented
to the geoid at a point on the surface of the Earth which does not
coincide with either the spheroid or the geoid. Such a connection is
subject to measurement errors such that any given spheroid associated
with a major surveyed area does not in fact coincide with the center of
gravity of the Earth and the earth's spin axis.

With the advent of satellites and their use for improving the
force field of the Earth it is becoming common practice to define a world
wide survey system or datum which has its spheroid, by definition, orientated
correctly with respect to the center of gravity of the Earth and its spin
axis. For example, the current NASA World Datum has as its semi-major

axis and flattening

2y}
Il

6378.166 kilometers

H
1

298.24
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With such a definition for the orientation of the spheroid it then becomes
a straightforward procedure to state the coordinates of the geoid and
the various geodetic coordinates of the tracking station relative to
this spheroid and to give transformation formulas for obtaining the
geocentric coordinates of a station. Of course when using such a
world wide datum it is necessary to obtain transformation formulas from
the datum of a major surveyed network such as the North American Datum
to the World Datum. Such transformations normally assume that the
spheroid for the local datum has its axes parallel to the axes of the
world datum spheroid so that a translation only is needed to transform.
from one spheroid to the other.

Before proceeding further, I shall now briefly show that to
first order in the flattening, f, a spheroid approximates an equipotential

surface for the Earth. This proof depends upon the experimental fact that

[
1

5 o(1/f)

I, ™, 8" =0(1/fF), n>e.

The proof proceeds in the following manner. For any point on the spheroid

i
X,v,2,8 = V&2 +¥2 + 22 |
o’ "o’ o’ "o o o o}
let
Z, Rt
sin ¢ = s Cos P = ""'TF’”""
o] o
a = semi-major axis of spheriod,

]
I

flattening.
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Then:
R2 2 sin2
g cos ¢ + ? 5| = 1
a (1 - 1/f)

For any point rigidly connected to the Earth, the measured gravitational
potential will be the sum of the gravitational potential, U, as measured
in inertial space and a potential whose gradient yields the centrifugal
force arising from the earth's rotation. Letting this earth-fixed
potential be ¥ and noting that all coefficients in the expansion for U
are O(l/fz) except J:

7 0 ot R (X% + Y°)

¢=—§—[1+ 22 (3—§2—-1)+ e +O(l/f2):] ,

where w, = angular rotation rate of Earth (rad/sec). We consider now
the potential, wo’ for any point XO, Yo’ ZO on the spheroid. From the

above equations:

where it has been noted that:

2 3
“ ® = o(1/f).
2K
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Thus, letting
ag @
R I 2
Yf = - Iyt g *0(5),
we have
K o ;o 2
Vo= - g+ o/,

which is a constant to O(l/f).

The above proof indicates that the geoid (more properly the
co-geoid) will not differ markedly from a properly defined spheroid.
Consequently, the spheroid provides a convenient base for specifying
quantitatively the geoid. This is done by specifying the geoidal height,
H( P » XG) for any given geodetic latitude, Pgs and longitude, KG’ as
defined on the spheroid. This relationship is shown in Figure U4A where
it can be seen that any point XG’ YG, ZG on the geoid is related to the

geodetic latitude and longitude by the formulas:

tal
]

4 (gG + H cos @G) cos KG,

]
Il

s (gG + H cos ¢G) sin XG,

N
Il

2 .
(1 - 1/%) (g tan @y + H sin q.
We are now ready to include the remaining geodetic quantities

needed to specify the geocentric location of a tracking station. Those

quantities which have not yet been discussed are (in order of importance):

icJ
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h = elevation of station above geoid (measured normal to geoid),

€ = deflection of local vertical in meridian (positive north),

{ = deflection of local vertical in prime meridian (positive east),
83X, 8Y, ®Z = position of center of spheroid assoclated with local survey

relative to center of world-wide (NASA) spheroid.

Figure 4B shows schematically the first of these three quantities in

relation to the geoid and spheroid. The last three are self explanatory.

Without further discussion I shall now give the final computational

procedure for determining a station's geocentric cartesian coordinates given

the geodetic quantities that I have just previously discussed. For further

details I refer you to references 2 and 3.

a

s a, f = semi-major axis and flattening

g =
L .
\/ 1+ (1 - 1/f) tan? @; for local spheroid.

<
I

[CL + (H + h) cos @G] cos Ag - h(Eg sin Py COS Ay + N cos @, sin KG]
+ 38X + second order in § and T,
[GL + (H + h) cos @G] sin A, - hlE sin P =in Mg - M cos @ cos KG]

+ 8Y + second order in § and T,

1(§4
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2
= - +
Zp [(1 - 1/%) ¢, (H + h) cos @G] tan @, +h § cos @
+ 8Z + second order in € and T.
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LECTURE II

INTRODUCTORY REMARKS CONTINUED

In Lecture I we briefly considered a suitable representation
for the geopotential and its relation to methods for locating a tracking
station on the surface of the Earth. I now wish to turn our attention
to the motion of a satellite under the influence of the geopotential and
to present some working formulas relating the geometry of the satellite
relative to such a station, which will be needed in the future lectures
when we consider in more detail the effect of errors in the location of
the tracking station and in the satellite motion.

Generally when we speak of a satellite orbit we imply the
ability to compute (to some acceptable accuracy) the position of the
satellite as a function of time in inertial space (for example the True
Equatorial System of Date). The computation of such a satellite ephemeris
clearly implies that a well defined force field has been assumed to be
acting on the satellite, and satellite tracking data has been used to
determine the orbit parameters (initial boundary conditions) for the
solution of the differential equations of motion for the satellite.

Since we are primarily interested in the geodetic aspects of
satellites and their motion I shall make the following restrictive
assumptions to simplify the analysis which will be presented in the

following lectures.
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A, Assumptions Concerning Satellite Orbits.
1. Satellite motion
a. non-relativistic approximation to equations of motion,
b. near-earth satellites with small eccentricity (satellite
altitude not less than about 1000 km and eccentricity
e < .05).
2. BSatellite forces not considered*
a. non-gravitational in origin,
1) air drag
2) radiation pressure
3) electromagnetic
b. non-static and extra-terrestrial gravitational forces,

1) Sun, Moon, other planets, etc.

2) earth's body and sea tides.

In addition to these assumptions we presume fhat we have at our disposal
a world-wide net work of tracking stations together with the necessary
data links and computer programs to establish (or track) the satellite
to an accuracy limited by the accuracy of the geopotential and station
locations assumed and the accuracy of the experimental tracking data.

To further simplify our considerations I shall assume that there are
negligible errors in the experimental tracking data. In particular

I assume:

*
See for example reference L4 for a discussion of their effects.



-IT.3-

B. Assumptions concerning experimental tracking data.

1. Signal propagation errors due to atmosphere are not considered,

a. ionospheric and tropospheric refraction (scintillation
if optical data),

b. ducting, skip propagation, etc.

2. Experimental instrumentation errors are negligible,
a. misalignment and poorly calibrated tracking instruments,
b. "front-end" receiver (detector) noise

c. errors in transmission and formatting of data.
There are four fundamental measurements that are commonly made
during the time that a satellite is above the horizon of a tracking station.

These are:

1. Vector slant range

o(t) = r () - rp(t)
2. Scalar slant range
p(t) = |p(t)]

3. Slant renge unit vector

o(t) = o(t)/o(t)

4. Scalar slant range rate

5(t) = =2 o(t) = 5(t) - B(t)

where:

?s(t), fs(t) satellite position and velocity in True Equatorial System

of Date

;R(t), fR(t) tracking station position and velocity in True Equatorial

System of Date.

1 }‘2
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The slant range vector is typically the type of data taken by a tracking
radar using the narrow beam pattern of the antenna to measure the slant
range unit vector and its range (time of flight) instrumentation to
measure the scalar slant range. Some radar tracking systems measure only the
scalar slant range recognizing that £he operating frequency is too low
to accurately define angles. Optical tracking, of course, measures the
slant range unit vector that is, right ascension and declination or
azimuth énd elevation. Finally tracking systems exist which use the
measurement of the radio Doppler shift to make direct measurement of
the scalar slant range rate. Some installations measure the slant
range vector as well as the scalar slant range.

Clearly, the above types of data involve various combinations
of quantities directly related to the relative geometry between the
satellite and station during the time that the satellite is above the
station's horizon. The remainder of this lecture will be devoted to
presenting notation, convenient coordinate systems, and expressions
relating the various quantities associated with the relative geometry

between the satellite and station.

Let
tc = time of closest approach of satellite to station,
tR = time of satellite rise above station's horizon,
ts = time of satellite set below station's horizon,
B(t) = satellite argument of latitude,
8B, = B(t,) - B(t,)) = 8(t,) - B(tg),
EZ’ AZ = elevation and azimuth of satellite at tc.

i¢3
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Figures 5, 6, and 7 show the geometry of the pass and presents a convenient
coordinate system in which to consider the motion of the satellite relative
to the station. This coordinate system is fixed in the satellite inertial
space and has its coordinate axes defined at the time of closest approach,
tc. The Z-axis is defined to be the direction of the instantaneous

angular momentum vector of the satellite at tc. In Figure 5, the X-axis

is defined as that line of intersection between the equatorial plane and
the plane normal to the Z—éxis and which contains the satellite position

at tc. The Y-axis is choosen such that the X, Y, Z coordinate system

is a right-handed system. Clearly, the X-Y plane is the osculating

plane of the orbit at the time of closest approach.

Figure 6 presents in more detail the pass geometry at the time
of closest approach where the H-axis passes through the position of the
satellite at tc. Figure 7 presents the geometry of the pass projected on
the X-Y plane and where the new coordinate axis, L, has been introduced
to make the H, L, Z coordinate system a right-handed system. In Figure 7,
the satellite position relative to its position at the time of closest
approach is approximately shown with the change in the argument of
latitude being denoted by AB. (For simplicity the motion of the station
during the time of the pass has been approximated as zero for clarity.

The coordinate system which will be of primary'interest to us 1in the
following lectures is the H, L, Z coordinate system presented in these
three figures.

The usual definitions for the elevation, EZ’ and azimuth, Az’

are inconvenient when deriving general formulas valid for all possible

15'4
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paths of satellites past a given tracking station. For example, if a
satellite passes through the zenith of the station the azimuth makes a
discontinuous change of 180°. Two quantities directly related to the
azimuth and elevation are much more conveniently used in such derivations.
These have been denoted as the "pseudo azimuth", a,, and "pseudo elevation",
e. Figures 8A, 8B, and 8C show the relationships between the normally
defined azimuth and elevation and the pseudo azimuth and elevation. It

can be seen that the pseudo azimuth and elevation are obtained by

altering the quadrants in which the azimuth and elevation lie such that
there is continuity in changing from one type of pass geometry to another.
For example, referring to Figure 6, the pseudo elevation is indicated and
(for the case shown) can be seen to be identical with the normally defined
elevation. This pseudo elevation will remain continuous as the vector e,
decreases through zero and goes negative, at which time the pseudo elevation
increases beyond 90°. From Figures 8A and 8B it can also be seen that as
P, goes negative there is no discontinuity in the value for the pseudo
azimuth.

In the lectures to follow the effects of the errors will be
considered to first order. Consequently, the coefficients multiplying
these errors need be derived only to a crude accuracy. For example, to
sufficient accuracy the. change in the station position during the time
of the pass can be neglected in the expression for the slant range
when it is involved in expressions which have been expanded to first
order in the errors. Those relations which will be needed in the follow-
ing lectures are now briefly summarized to the required accuracy. For

details, I refer you to reference 5.

1495
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Let

R |;R(tc)l’ rs = |;s(tc)l’

Ia]
"

rR,S = rR/rs’ Pg = p(tc)/rs'

Then, from Figure 7,

and

sin 6 = r

R, 510 (m/2 +e) = Tp g COS e

These two formulas may be rearranged to yield:

L)
Il

1
cos 6 - V r2 - Sin2 e,
R,s

2
) 1 - rRls
I |
v _ 2 2 .
1 rR,s cos e + rR,s sin e

Neglecting the station motion in inertial space, to zeroth

order the slant range vector in the H, L, Z coordinate system becomes
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py(t)
B(t) = pL(t) )

py,(t)

pg cos 6 - 1+ cos AB(t)
= r | sin AB(t) + first order,

- g sin 6
where,
88(t) = B(t ) (t - t_) + o(e).
Finally, defining the quantities

o =1 - pg cOS 0,

c(t) =1 - cos AB(t),

1-a - c(t)

o(t) r | sin AB(t) + first order,

- Py SIn 6

with

o(t) =V 3(t) - p(t) = r W/pi + 2o c(t) + first order.
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Suggested References for Lecture II.
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5. Guier, W. H., "Studies on Doppler Residuals - I: Dependence on
Satellite Orbit Error and Station Position Error", Applied Physics
Laboratory, The Johns Hopkins University, Report TG-503, June 1963.
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IECTURE ITII

STATION AND SATELLITE TRAJECTORY ERRORS

With this lecture we shall begin the discussion of the effects
of the geodetic errors. I begin by considering the station location
errors. In the first lecture, we considered the Earth fixed cartesian
coordinates of the tracking station. Let its corresponding spherical

coordinates be:

geocentric latitude,
Z

=y

. -1 "R
= sin =
R
XR = geocentric longitude,
-1
= tan” " Yp/Xq;
rp = geocentric radius,

VE 22

Let the errors in these coordinates be B SKR, drp respectively. Then,
a representation of these errors in distance units to first order in the

errors are:

=
|

—5rRJ

=

_rRatpR)

rgp cos @R SXR .

3
1
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I now wish to rotate these errors into the H, L, Z coordinate system
defined in lLecture II.
Rotating first about the station radius vector by the pseudo-

azimuth, a_, (Figures 8A and 8B of Lecture II):

E is unchanged,

'R
= i + B
ELR E@R sin a XR cos a_,
EZ' =B cos a_ - E sin a_.
7

@R Z KT

Where EZ; is perpendicular to ;R and lies in the H-Z plane and is

frequently referred to as the station cross-track error. Making now

a rotation about the L-axis by an angle x (Figure 6 of Lecture II),

E, =E cos X - E,' sin ¥,
R 'R g

E is unchanged,

[ea]
I

E sin x + E,!' cos X.
Zp TR R

From Figure 6, it can be seen that

sin ¥ Py coOs e,

cos X

sin e + r
Ps R,s

Successive substitutions for sin X, cos x and then EZ' yields:
R

" E =7 E + p [sin e E - cos e cos a_ B + cos e sin a_ E, ]
H-R R »S I‘R s rR A CPR A )"R

e
e
(o
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E =sina_ E_+E cos a_,
LR z " %g XR z
= - gi E i
EZR rR,s[COS a, B sin a_ EKR] + pS[cose %{+ sin e cos a  E

- sin e sin a_E
Z XR

These are the expressions for the station error which we shall eventually
use in computing the effect of station error on tracking data residuals.
From here on we shall assume that these errors are scaled by the mean
equatorial radius, RO.

I now want to direct our attention to the more involved task
of obtaining similar expressions for errors in the satellite motion during
the time the satellite is above the station's horizon. We assume that
the satellite has been tracked such that satellite position errors may
be considered only to first order. We denote the coordinates of the
satellite by Ty Py ks in inertial space. These are related to the

osculating kepler elements6’7 by the relations:

.. a(l - %)

5 T ¢ cos (B = 0) (units of RO)

sin P, = sin i sin B,

cos @_ cos (Xs - Q) = cos i sin B,

cos ¢ cos (XS - Q) = cos B,

tan (XS— Q) = cos i tan B,

]



where:

@)

= =

AU
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semi-major axis (units of Ro)’

eccentricity,

inclination,

argument of perigee

right ascension (longitude) of ascending node,
mean anomaly,

n, = anomalistic mean motion,

argument of latitude,

B - w = true anomaly,

M+ w.

When a change in the geopotential is made of the form:

K Ko
=5 % I
(0] S rs

1 .
o [AJn Pn(51n @S)

i . m m o,
+m§l Pﬁ(s1n @S)(ACn cos m A  + A5 sinm Xs)]}

the equations of motion for the changes in the osculating elements to

first order are:

5a =

5€

2 0AU
noa aB + O(G),

=L [sin (8- o) AL + 2 cos (B - w) —Q%g—]’fo(e)»

na = a
o]
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agi 1 oAU
& 5= cot 8 —5 * 0(e),
n a
o
NS | JAU
sin i 8Q = 5 STt o(e),
na
o)
1 JAU 2 . AU q
€BM = na [- cos (B - w) —so t 5 sin (B - w) S ] = o(e),
- 3 _bda 2 AU -
3% = 5 5 l’lO - noa —Sa cos i 80 + O(e).
In the above formulas, quantities such as gﬁU have been approximated by:
s
OAU QAU
Brs =% o(e),

and 5% = 8M + 5w has been used to avoid terms 0(1/e).

Integration of the above differential equations of motion with
the appropriate boundary conditions will provide one description of the
effect of errors in the geopotential on the satellite trajectory. We
shall transform these changes in the osculating elements into the H, L, 2
coordinate system in order to discuss these effects on the time dependence
of the tracking residuals. However, I first want to give two examples
of solutions to these equations to provide a better intuitive feel for
the kinds of effects that arise from errors in the geopotential.

Let us first consider the effect of changing the boundary
conditions. The general solution of these equations of motion can
always be considered as being composed of a particular solution of the
inhomogeneous equations (including terms explicitely dependent upon 4U)

and a general solution of the homogeneous part of the equations (AU = 0).

-

104
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Considering the solution of the homogeneous equations first, we set

AU = 0 and obtain the following constants.

aao = change
seo = change
610 = change

500 = change
€ dw_ = change

SMO = change

with

in

in

in

in

in

in

semi-major axis,

eccentricity,

inclination,

right ascension of ascending node,
argument of perigee,

mean anomally,

da
o .
= - - +
Séo(t) M 3/2 - no(t to) higher orders,
t =some epoch, conveniently chosen to be the epoch of the

original orbit.

It can be seen that when to is chosen as the time of the initial orbit

epoch the constants aao, aeo, aio, 500, Swo, and SMO can be interpreted

as changes to the orbit parameters at the orbit epoch.

The above constants, which arise mathematically from a solution

of the homogeneous perturbed equations of motion, are not trivial additions

to the perturbed satellite motion from a physical point of view. When

an orbit 1s determined from tracking data using erroneous station locations

and satellite forces, the resulting orbit parameters will obviously be

in error even if there is zero error in the tracking data itself.

Consequently, when considering the ‘effect of geodetic errors on the

1990
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satellite motion, account must be taken of the errors in the orbit
parameters themselves. The resulting time dependence of the tracking
data residuals due directly to errors in the orbit parameters will be
derived using the above solution to the homogeneous equations - keeping
in mind that they are not arbitrary but a rather complicated implicit
functional of the geodetic errors and amount and distribution of tracking
data along the satellite trajectory.

I shaell choose one other (relatively simple) example to aid
in understanding intuitively the effect of satellite force errors on
the satellite motion and eventually on the tracking data residuals.

This example allows only an error in the value of J,, the so-called

o3’
pear-shaped term. A particular solution of the above equations of
AJ
‘motion for AJ, # O is to first order. ( 3 is always considered of

3 Js

first order, AJ_ of second order.)

3
da = second order
AJ3 sin 1 AJ3
se = 1/2 sin w + O(e ),
) J
2 2
AJ3
ai = o(€ J ))
2
AT e AT
edw = 1/2 3 sl s+ O(e2-———i—),
J J
2 2
AJ3
80 = O(€ ki )}
2
AJ3
88(t) = o(e —=).
2
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From these equations it can be seen that an error in J'3 gives rise to
periodic errors in the eccentricity and argument of perigee the period
being the time of one revolution of perigee.

The example of an errored J3 is directly generalizable to the
form of the errors in the satellite motion arising from errors in the
odd zonal harmonics (AJn # 0, n odd). Without further remarks, the
principal effect of geopotential errors are:

1. Error in even zonal coefficients (AJn # 0, n even):

a. Secular errors in w, Q, ¢ (increase approximately linear with
time)

b. Long period errors in w, 8.
c. Short (orbital) period errors in all osculating elements.
2. Error in odd zonal coefficients (AJn # 0. n odd):
Long period errors in € and w.
3. Errors in the non-zonal coefficients (ACi, AS? # O)
Periodic errors of angular frequency.
® = m.(mE - Q) , 1 <m < n.
As a first step in obtaining the errors in the satellite motion
in the H, L, Z system, I shall transform the errors to a moving coordinate
system which will also display more clearly the nature of the errors.

This coordinate system is shown in Figure 9A, where:

error in satellite radius (satellite altitude error),

or (t)

6£s(t) error in orbital plane normal to ry (satellite along-

track error),

152
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5ZS(t) = error in direction of satellite angular momentum vector

(satellite cross-track error).

From Figures 9A and 9B it can be seen that

628 rs[cos ¢s cos I Q0 + 58] + second order,

SZS - rS[cos ¢S sin I 80 - sin B 8i] + second order,

Noting from these figures that the local inclination, I, obeys the relations:

cos @ cos I = cos i,

cos QS sin I sin 1 sin B;

SES = rSESB + cos i 8Q) + second order,

dZ

rS[sin B5i - cos B sin i 8Q] + second order.
Using now the relations between the various kepler elements:

sf(t) + dw(t)

38(t)

58(t) + 2[se siﬁ (B - o) - (edw) cos (B - w)] + 0(e),

1353
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and
ory = T i) &)
= 8a - alse cos (B - @) - (edw) sin (B - w)] + 0(e),

we have:

or_(t) = 8a - alse cos (B - @) + (edw) sin (B - w)] + o(e),

54 (t) = al82 + 2 8e sin (B - ®) - 2 (e8w) cos (B - w)] + 0(e),

5zs(t) = al5i sin B - 80 sin i cos B] + 0(e).

I shall begin the next lecture by discussing the above two examples in

the &r_, Sﬂs, 8Z, system.

Suggested references for Lecture III.

6. Brower, D. and Clemence, G. "Methods of Celestial Mechanics", Academic
Press, (1961).

7. Plummer, H. C., "An Introductory Treatise on Dynamical Astronomy",
Dover Publications, New York, (1960 edition).
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North Pole Direction

p)

Satellite Orbit
yd

o4

S
82 /

"”;"Srs

A

First Line
of Aries

Figure 9A

North

Satellite
Trajectory

East

Figure 9B
150



-IV.1-

IECTURE IV

ERROR IN SATELLITE MOTION (Cont'd.)

At the close of the previous lecture we obtained the general
expressions for the satellite motion errors in the coordinates dry, bzs, bzs
given errors in the osculating elements of the orbit. I now wish to consider

our two examples in this coordinate space.

1. Errors in the orbit parameters at epoch.
The constant orbit parameter errors can be directly substituted
into the expressions for the satellite altitude, along-track and cross-

track errors. We then have:

8rs(t) = Sao - a[&eo cos (B - w) + (eo sw) sin (B - w)] + 0(e),
3 °®
5£S(t) = a[&Mo + 6&04008 i BQO -3 o no(t - to)
+ 2(560 sin (B - w) - (6O Swo) cos (B - w))] + 0(e),
5Zs(t) = a[Sio sin B - sin 1 80 cos Bl + o(e).

Recognizing that the argument of perigee, w, is a slowly varying function
of time, the above expressions can be rewritten in a more transparent

form by letting

130
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SAO(t) = - a[seo cos w(t) - (eo Swo) sin w(t)],
aBo(t) = - a[aeo sin o(t) + (eb &»O) cos w(t)],

620 = a[SMO oo 4 SQO cos iJ,
517, =-——3—5a,
o)

8. =2 5Bo(t),

sz3 =-2 aAo(t),
521 = -asin 1 500,
8%, = a i,

so that when errors exist only in the orbit parameters

5 613 84,
SrS(t) =- 3 5£l - —5— cos B + —%— sin B8 + 0(e),
5£S(t) = 5£Q + 5£l(s - %) + 84, cos B + 513 sin B + 0(e),
5Zs(t) = 8Z, cos B + 8Z, sin B + 0(e).
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The above equations dlsplay the principal tlme dependence of
the errors in the satellite motion when errors exist only in the orbit
parameters at the orbit epoch. However, do not overlook the slow time
dependence occurring through the motion of perigee apd thereforekbzz and
5£3, and the small time dependence occurring due to the use of the
osculating elements for a and i. As is to be expected, 1f there is an
error in the period of the satellite motion, the satellite along-track
error grows linearly with time and the satellite altitude exhibits an
altitude error Sao which will not average to zero. 810 is the posiﬁion
error in the along-track direction at the epoch. Ig—z;n be seen that the

remaining terms in the error equations are oscilatory at the orbital

period.

2. Error in the third zonal coefficient, J..

3

Substituting the errors for the kepler elements corresponding

to AJ. into the expressions for ars, 825, 6Zs we have:

3
Srs(t) = - al3 —ji §3§—i sin w cos (B - w) + '% —Ei 2 > cos w sin (B - w)]
My
+ O(€ ‘TZ) + O(AJ3)
AT AT
= % —Ei sin i sin B + O(c~-3§) + O(AJ3)
M3
szs(t) = - —5= sin 1 cos B + 0(e ———) + O(AJ )
2
82 (t) = 0(e —) + O(AJ ).
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A very interesting point can be seen from these equations. We

had previously noted that the errors in the kepler elements due to an error

A
I3

in J. were long period to first order - that is order S However,

3 2

once transformed to a coordinate system that is closer to giving a direct

measure of the satellite position error, the effects (to this same order)
become short period. Because the dominant effect is now short period the
resulting satellite errors exhibit a similar time dependence to the errors
caused by orbit parameter errors along (example 1). This means that over
short intervals of time, say a few days it is possible to "soak up" most
of the error due to this geopotential error by appropriate adjustment of
the satellite orbit parameters.

To exhibit this effect clearly, we combine the two previous
examples assuming that no errors exist except in the value for J3 and
allow an error in the orbit parameters which will minimize the effect of

e have:

J_ being in error. From the previous results, w

3

sA(t) = 8A_(t)

= - a[aeo cos w(t) - (€O Swo) sin w(t)],

_ 3 sin 1
8B(t) = sBo(t) - a 53, =
AJ3 sin i
= - af a7, S + Be_ sin o(t) + (eo 6wo) cos w(t)]J,
8L = a[SMO + dw  + cos i SQO],
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o
=
]
t

1 3/2 E’ao’

3 sin i

<
N
~—~
o+
~
1]
no

8B(t) = 5z2(t) -a

J
J2 a
BL,(t) = - 2 BA(t) = 845(t),
5Zl = - asin i 500,
522 = 3 810,
and:
84, (%) 8L, (t)
Brs(t) = - 2/3 El - -——é;———— cos B + ———%———— sin B + higher orders,
szs(t) = szo + 521(5 -ao) + 5L2(t) cos B + 523(t) sin B + higher orders,
5ZS(t) = §Z, cos B+ BZ2 sin B + higher orders.

These equations have intentionally been written to look formally like those
which represented only orbit parameter errors. The only difference that

occurs when AJ. is not zero to the order considered here is:

3
My
Slé(t) - sﬁz(t) = - —— sin i + higher orders.
2

Since Slz(t), and therefore 6L2(t), are varying with time very slowly, it

becomes difficult to separate an orbit parameter error from this type of

209
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geodetic error. This tendency for orbit parameter adjustment to hide

geodetic errors, exhibited in this example, is a general result for many

types of geodetic errors, particular errors in the zonal harmonic

coefficients of the geopotential. It is for this reason that long

satellite trajectories are usually required to determine accurately

the zonal harmonic coefficients in the presence of other errors such

as station location errors and experimental data errors.8’9’lo
We have considered the general character of the errors in

the satellite motion over long spans of time through two examples. I

now want to consider in more detail the effect of these errors on the

tracking data for a specific pass of the satellite above a specific

station's horizon. To do this we transform the satellite motion errors

to the H, L, Z coordinate system. For some given pass, the H-axis passes

through the satellite position at closest approach and is fixed in inertial

space. Figure 10 gives the geometry of the errors in the ars, 6£S moving

coordinate system relative to the fixed coordinate system of H and L.

From Figure 10; it can be seen that:

5H

I

r, cos 4B - 825 sin AB,

i 4
SLS 5rs sin 4B + B g cos AB,

§ZS unchanged

8 = B(t) - B(t,),

t = time of closest approach.

[\
oy
F‘.
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Letting

C(AB) = 1 - cos 4B,

it can be seen that during the pass |C(t)| <<1 for near-earth satellites.

Rewriting the above equations:

BH, = ®r, - 84  sin OB - Bry c(aB),

5L SES +8r sin AB - 6£s c(ag),

SZS unchanged.

The procedure from here on involves expanding ars(t), aﬂs(t),
and 5zs(t) in the functions sin AB, C(AB) = 1 - cos AB, etc. and then
by substitution into the above equations for SHS and SLS, express the
time dependence of the satellite errors in the H, L, Z coordinate system
in functions of the form sin AB, C(AB) sin AB C(AB), etc. This
procedure can be done in general but is not too useful to the developement
of a physical understanding of the effects of the errors. Consequently, I
shall make this transformation'using the two examples discussed previously,
referring you to reference 5 given in Lecture II, for consideration of
the general case.

I use a subscript ¢ to denote a time dependent quantity evaluated

at t = tc. The result then becomes:

5Hs(sc, 88(t)) = sr, - [azc +B8A, sin B_ - 8B, cos sc] sin AB

o - [5rc -3 SAC cos B, - 3 8B, sin BC] c(4B)
- [8a_ sin B, - 8B, cos B.] sin 4B C(AB) + 0(c®) + higher orders,
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3L (8, 8B(t)) = 84, + [or, - 28A, cos B, - 2 8B sin B.] sin 48 - 84, C(48)

+ [SAC cos B, + 8B, sin eC] sin AB C(AB)

2

+ 0(C%) + higher orders,

82,(8,, 4B(t)) =8Z, + (80 sin i sin B, + &1 cos B ] sin OB
- 82, C(AB) + higher orders,
where:
Src = aao + SAC cos BC + 8BC sin Bc,

~

M+ + 80 s V1 _ s/z s -
8M_ + Bw  + 80 cos 1 ] - 2/3 8a (B, - B

i
I

N

o4, = a(t)
+ 2 9B, cos Bc - 28A, sin B,
8%, = - SQO sin 1(tc) cos B +81_ sin B,

A, = - a(tc)[8€O cos w(tc) - (eo &00) sin w(tc)],

AT, sin i(t ) .
¢/ + e sinw(t ) + (e 8w ) cos w(t )J.
8B, = - a(t )l 53, Ta(E,) o c oo c

(¥}

20
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In developing these formulas we have used the relations:

cos (Bc + OB) = cos B, - sin B, sin A - cos B, c(a8),

sin (Bc + 0B) = sin B + cos B, sin AB - sin B c(aB),

sin® AB = 1 - cos? AB = 2 C(88) + o(c?)

and where - 2/3 Sao AB has been considered negligible by virtue of our
assumption that the orbit has been "tracked" to reasonable accuracy so
that da_ B(tc) is not large.

In the next lecture, we shall use these relations to investigate

the residuals for various types of data.

References

8. O'Keefe, J.A., Eckels, A., and Squires, R. K., "The Gravitational
Field of the Earth", Astron. J., v.64, p. 245.

9. Newton, R. R., Hopfield, H.S., and Kline, R. C., "Odd Harmonics of the
Earth's Gravitational Field", Nature, v.190, p. 617.

10. Kozai, Y., "Numerical Results From Orbits", SAO Special Report No. 101,
July 31, 1962.
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LECTURE V

EFFECT OF GEODETIC ERRORS ON DATA RESIDUALS

For the fifth and final lecture I shall use the previous
results to consider the effect of station and geopotential errors on
tracking data residuals. By data residuals I mean:
Data Residual =
Experimental data point - Theory at time of data point, where,
as stated in Lecture II, we neglect experimental noise and instrumentation
contributions to the residuals.

Clearly, the error in the slant range vector is:
go = sry(t) - srp(t),

which, in the H,L,2 coordinate system is:

Spy
dp = 6pL )
SDC
HS(BCJAB) = EH
T
= LS(BC,AB) - ELT + second order,
Zs(BchB) - EZ

T
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where we discussed the station error EH , B, EZ in Lecture III and
A
discussed the nature of HS, Ls’ ZS in Lecture IV.
Corresponding to this error, the error in the scalar slant

range, e.g., the slant range data residuals are given by:

op = |B + 83| - —%— o . 8p + second order,

A —
p . 5p + second order,
where, from Lecture II:

( pg cos 6 - c(t)

o(t) = r sin AB(t) + first order,
- Pg sin O
2 .
o(t) = r [ps +2a C(t)]* + first order,
@, = 1- pg cOS 8,
c(t) =1 - cos AB(%).

The error in the slant range unit vector, e.g., the angular data

residuals are give by:

A e 2 A
= —&- =—5& - _§E_.
8o = &( S ) 5 P =3
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or; the angular error scaled to distance error is

A - A A -
pdp =8p - p (p - Bp).

Finally, the error in the scalar slent range rate, e.g., doppler data

residuals are given by:

di = _Ti%—[—:pL)_ (e8p)]

(o4
e}
|

2
1 1 dp 2 d
p3 [ = D (pap) at TP at (p&p)].

Each of the above types of residuals can be computed by substituting

in the appropriate expressions for the error in the vector slant range.

Using now the two examples in Lecture IV as a guide, we can

write
sp(t) = 530 + 531 sin 0B8(t) + 532 c(t) + higher orders
where
68C = 6;s(tc) - 6;:R(tc)’

(The proof of this form for general geopotential errors is lengthy and
is given in reference 5 of Lecture II.) Substituting this form into

the above expressions for slant range residuals:

S
<
75
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ot) 8p(t) = p_ [cos 6 8p, - sin 6 &p, J
s s HC ZC

+ [SpL + ps(cos 6 8py - sin 6 Bp, )] sin AB(t)
C 1

1

+ [2 sle - SpHC + pg(cos 6 8pH2 - sin 6 SpZE)] c(t)

+ O[sin AB C(t)] + higher orders.
For satellites whose altitude is of the order of 1000 km,

<
Pg = -25

c(t) < .15 .
Therefore, to a fair approximation:

A, Scalar slant range residuals:

ot) 8o(t) = p_lcos 8 8p, - sin 6 8p, 1 + [8p. + 0(p_)] sin AB(t)
rs s HC ZC Ib s

+[28p, - oy + 0(pg )] c(ag) + olsin A8 - c(t)].
1 c

Similarly, by substitution into the expression the other types of

data:
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Angular Residuals:

A A A
s ©p =Bpy + Bp; sin AB(t) + 80, c(t) + olsin AB - C(%)],

?

50, - cos 8 [cos 6 8p,; - sin 6 &p
(/ HC HC ZC

A 2

8py = Pg| BPy,
C
\8p, + sin 6lcos 6 &p,; - sin 6 Bp 1/,
>Pz, Hq Zq
- cos 6 8p; + O(p.)
// LC s \\
)
A i
80, = Py - (cos 6 5pHC - sin 6 8pZC] + O(pS)I
\\\ sin 6 5pLC + O(ps) 4 ,
2 8py + 0(p,)
C
A
B, = o(p,)

280, * o(p,)
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C. .Range Rate Residuals:

3 |
ni <p(t)) di sp(t) = pifépL + 0(p,)]

rs C

- p lcos 6 8p, - sin 0 8p, + O(p_)] sin AB(t) + O(p2 c(t))
s HC ZC s s ’
where n_ = B(tc).

These results are summarized in the following table for
purposes of comparison, where they have been scaled to like functions
of time. It should be noted that in the above expressions and the
following table the angular residuals have been written as a three-

dimensional vector in the H, L, Z coordinate system. However, in

reality, the residuals are only a two dimensional vector since

o(t) - 8p(t) = 0.

This table summarizes the largest contributions to the
expressions for data residuals when experimental errors are neglected.
Clearly, the errors SpHC, 5plb, and szc’ can be expressed in terms of
the station location errors, orbit parameters errors, and geopotential
errors following the procedure outlined in Lectures III and IV. A
rough sketch of the time dependence of the various terms are given in
Figures 11 so that for any given geodetic error its effect on the
time dependence of the data residuals can be found.

Several interesting conclusions can be drawn from this table.

First, it can be seen that for comparable signal to noise ratios, range

and range rate data yield roughly the same information. This, at first

24i
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glance, is surprising since one would suspect that range rate data, being
the time derivative of the range, would loose some information (roughly
analogous to the constant of integration if one attempted to integrate
the range rate data to obtain range). Clearly, this is not true except
to note that it has been assumed that the transmitter frequency of the
satellite which generates the doppler data is known exactly so that the
incoming signal can "zero-beat" out the satellite transmitter frequency.
(To the extent that this is not true, a term which is constant with time
should be added which can easily be separated out from the time dependence
noted in the table). The second conclusion is that when range and/or
range rate is measured, the following measurements of the relative error

between satellite and station can be made from a single pass.

dpr
Lo

®p, cos @ - sin 6 Bp, .
e Ze

Considering now the parameters that can be determined with

angular residuals from a single pass, we have:

507 »
Ib

0. - cos 6 [cos 6 dp, - sin 6 8p, ]
o He Za

= sin 6 [sin 6 Bpy + cos 2] 8Py 1,
C C
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80, + sin 6 [cos 6 8p, - sin 6 &p, ]
%e e %q

= cos 6 [sin 6 oy + cos 6 dp, ],
C C

and

[cos 6 8oy - sin 6 8p, ],
c c
so that more information is available in optical data than range or
range rate data for equivalent signal to noise ratios and data rates.
Touching, for the moment on the relative merits of different
types of data, the following should be noted. Range and range rate
systems are usually radio tracking systems and consequently have all
weather capabilities and designed to yield very high data rates. I
believe most people agree that no radio tracking system significantly
exceeds the data point accuracy of a good optical (angle) tracking
instrument. However, optical tracking systems are not all weather and
as a maximum can only take data at night. Including the tedious Jjob
of reducing the optical photographs, we can see that range and range
rate systems yield high data rates in all weather conditions but per
satellite pass may yield less information than a high quality set of
optical data. Consequently, it would appear that a high quality radio
range or range rate system and a high gquality optical tracking system
are complimentary to each other. For example, optical data provides an
excellent means for monitoring the accuracy of radio tracking systems.
11,12

This fact has been recognized in the ANNA geodetic satellite in
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which was flown an active flashing light to aid in obtaining increased
optical data rates together with instrumentation for two radio tracking
systems.

So far we have been concerned only with the data residuals for
a single satellite pass. Clearly, when considering many such sets of
data residuals, one has the capability of measuring the time dependence
of the orbit error over long time spans to gain information on
geopotential terms which produce secular and long-period effects.
When using such data to make a significant improvement in current
values for station position parameters and coefficients of the
expansion of the geopotential, a sufficiently large number of
parameters must be inferred from the data that it is essential to
have very large amounts of tracking data. In fact experience has
shown that one really needs many satellites at differing inclinations,
to accurately determine the non-zonal coefficients of the geopotential.

The techniques and associated computer programs which are
used to perform such determinations of geodetic parameters are outside
the scope of this series of lectures. It is sufficient to note that
one must have available high quality tracking data from many satellites
and extensive computer programs before such an attempt is capable of
improving on current accuracies. I hope that this series of lectures
has clarified some of the problems involved in the design of such
programs and highlighted the essentials of the information content of

the data residuals that would be used.



11.

- V.11 -

Macomber, M. M., "Project ANNA", Proceedings of the First
International Symposium on the Use of Artificial Satellites for
Geodesy, Washington, D. C., 1962.

Guier, W. H., "Navigation Using Artificial Satellites - The Transit

System", Proceedings of the First International Symposium on the Use
of Artificial Satellites for Geodesy, Washington, D. C.,1962.
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FIGURE 11A

FIRST SYMMETRIC TIME DEPENDENCE
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FIGURE 11B

FIRST ANTI-SYMMETRIC TIME DEPENDENCE
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FIGURE 11C

SECOND SYMMETRIC TIME DEPENDENCE
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Geodetic Problems and Satellite Orbits

by

Dr. William H. Guier



Geodetic Problems and Satellite Orbits

The main problems to be discussed in this series of lectures
will be:

1., Methods of finding and specifying where tracking stations are
on the surface of the earth. The location of tracking stations
being with respect to the spin axis and center of gravity of
the earth.

2. Discussion of satellite motion in the earth's force field.
In particular the effect of the various harmonic terms in

the earth's potential on the motion of a satellite.

Some standard references are:

1. Bomford, B.G., "Geodesy," Clarendon Press (1952).
2. Heiskanen, W.A. and Vening Meinesz, F.A., "The Earth and Its
Gravity Field," McGraw-Hill (1958).

Earth's Potential

Assuming that the earth's force field is +gradU, we have:

u(R,0,1) =k 1,+0§Jn R, [" P, (sin() +

R =2 ﬁ—
oo n
Y, R. P F® (sin()) |c® cos aA + 8% sin n A
=2 = _0 n n n
R

for the earth's potentail, where R is distance measured from the center
of the earth, (L is latitude, A is longitude. P (sin (D ) end Pﬂ (sin q) )
ere the standard and associated Legendre polynomials. R, is the average

0
earth's radius, while K, Jn, CI;, S‘E are constants to be determined.

If we make the logical assumptions that our coordinate system
has its origin at the center of the earth, and that (D is measured




.

-

Earth's Potential 2.

relative to the earth's spin axis (which we assume goes through the

center of gravity of the earth) and both the center of gravity of the

earth and the earth's spin axis =v= fixed relative to the earth's
=C0' =8'" = '='=.

crust, it follows that Jl Cl S} O and 02 82 0

We will not be interested in the gravitational field inside the

earth, and will assume that the gravitational field is time indepen=-
dent.

Satellite Orbits

Beside considering the equations of motion of a satellite, we
will also consider orbit parameters.

There are many restrictions we will make in our study of the
motion of a satellite:

1. The equations of motion will be non-re B tivistic.

2. Air-drag and electromagnetic forces will not be considered.
We will assume that the satellite is above 1000 kilometers
vwhere air-drag is negligible.

3+ We will assume a low eccentricity € <C .05.

L. We will neglect all errors in data. This will include such
errors as:

&. Radio data, i.e., ionosphere and troposphere refraction
will be neglected.

b. “Front End" receiver noise, that is, detector noise will
be neglected.

c. Data goofs such as bad card punches and systematic
errors will be neglected.

5. Extra-terrestrial forces will be neglected, i.e., the force
of the sun, moon and planets.

&
v
[




Dats Residuais 3.

We will assume some force field for the earth; and some numeri-
cal way of solving the equations of motion. At a particular time tk
we will have computed and measured orbital parameters. The difference
between the measured and predicted values will be called the data re-

siduals.
In equation form:

R(tk) = T(tk l Forces, station location, orbit parameters,
methods of computation) - E(experimental error).

We will try to minimize the residual errors in the least square

sense.

Kinds of Data

The kinds of data we will be concerned with are:
1. Optical data giving the slant range unit vector.
2. Radar range data giving the scalar slant range.

3. Range rate data from Doppler measurements.

Naturally some stations will have mixtures of these three

types of data. These lectures will stress type (3)-

Finding Station Locations

7
&_j SF(n Axi's

Qreen widh
Meridion 7
E(,bbmtorial_ Plane
X

Figure 1.
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Finding Station Locations L,

We will now develop a method for specifying where a tracking
station (xT > Yp zT) is with regec to the coordinate system shown
in Figure 1. ’

We first approximate the earth by a spheroid or oblate ellip-
soid of revolution. Specifying a spheroid is referred to as a datum.
Thus the NASA world datum is

R, = 6378.166 kilometers fy = 1/298.2L

where Ro is mean equatorial radius of the world scaling factor and

£, the so-called flattening, is related to eccentricty by the formula:
£=1- V1-€2.

With this scaling factor the earth's semi-major axis is 1 in
the NASA world datum.

Geodetic latitude

Ko, 4o, %o

Figure 2.

Positions on a spheroid are given by reference to geodetic

~latitude, defired in Figure 2. (0ne uses the normal to the surface

since this is the approximate way a weight would drop.) Some



Geodetic Latitude 5.

standard formulas are:

s/ Vi+(2-£)? tand 0

o
L]

N
0

2
o (L= 1) than (DG

—

a® aa(l - f)2

= 1

Geodetic longitude = tan™t Y0

*o

Equipotential Surface

An equipotential surface \V on the surface of the earth,
taking into account the earth's rotation is:

VI W

=U+ —g (x2 +Y'2) = Constant.

To terms of higher order, one has:

v, = K P S 3 2°
| — - —_— - 1
R 2 R 2
L R
X Y 2 2 2 2
S tti = 0 = = =
e ot v Vom0 fot@ v RtV fh
0 0 o
on the surface, one has:

~ 2 A2
O'U0+-2-E- Ro/QG ’




Equipotential Surface ' 6.

Two formulas are:

3
VeRo w1 - 92+ WG B3
K 2 2K
3 %%
T=-29% " %

Geoid

A geoid is an equipotential surface that best 'approximates

mean sea-level.

A co-geoid is the best approximation to a geoid over land

maesses where the geold can't be actually measured.

To give position on a geoid, one uses the geoidal height H
vwhich is the distance between co-gecid and spheroid measured along
the normel to the spheroid. Thus position on the co-geoid is gi-

ven by the formulas:

*a

(pG + H cos (bG) cos AG

@G + H cos (DG) sin )‘G

Y6

2, = 2, + H si
G 0 sin (DG §)7?

Figure 3.

oo
A%
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Position on Earth T

To finally specify position on earth, one must have three other

parameters.

h = elevation &bove co-geoid (measured perpendicular to co-geoid)

Since the perpendicular to the co-geoid may not be parallel to the per-

pendicular to the spheroid, we need:

§ = deflection in meridian between perpendicular to co-geoid

and perpendicular to spheroid

72 = deflection in prime vertical between perpendicular to co-
geoid and perpendicular to spheroid.

The final formulas for the position of a tracking station are:

L]

XT LQG+(H +7z)cos (DC_] cos /\G-h [gsin (DG cos AG*’

72 cos q)G sin AG] + 6}( + terms of higher order
Yy = [QG+ (E +7]) cos (DG] sinAG -h [5 sin (DG sin )\G -

77 cos CDG cos /\G:l + (Sy + terms of higher order

N
i

T _zo+ (H +7?) sin (DG + gh cos (DG+ 52 + terms of higher order

: < N <
The three terms Ox’ ()y, (: z have been added to account for

changing from one datum to another. TFor example, from North American
datum to NASA world datum.




Station Errors 8.

Letting the coordinates of a gstation be Xps Ygs 2

The

(a)
(b)
()

"

L}

R then

2 2 2
\/"R"?”R*ZR

geocentric latitude = sin zR/rR

geocentric longitude = ta.n“1 yR/ Xp

fundemental errors we will be looking for are:

altitude error Er = (SrR

R=rR6(DR

East - West error EA = Tp cos (DR 6 AR
R

North -~ South error E(D

where 61-R ) 6 (DR, and (S /\'R are errors in range, latitude and

longitude. Note for small flattening that (DR - (DG = 0(r).

Relative Geometry Between Satellite and Station

To describe the motion of a satellite we will use an inertial

system as shown in Figure L.

y

sP:'r\ axis of earth

/zplane of eclipfic

C.G of
arth 7
£ gmafon'al p/ ane
First ine of Aries or Vernal E?woho)(
x Figure L.

o
N
N




Relative Geometry 9.

When we use the present instantaneous plane of the ecliptic
such a coordinate system will be called the True Equatorial System
of Date. When we use the Vernal Equinox of 1950.0 or 1963.5, for

example, such a system will be called a Mean Equatorial System.

Clearly in such a system one has

Ae) = A+ Mg, (t) + W gt = )
(¢]

where

A (t) = present longitude of tracking station
R

A

= longitude of tracking station with respect to Greenwich

G
nmeridian
G, (to) = longitude of Greenwich at time t_ (this value can
0 be found in the American Evhemeris)
W E = Earth's rotational rate

Some Useful Coordinate Systems

Figure 5. shows a coordinate system X, Y, Z that has X, Y in
the instantaneous plane of the orbit of a satellite and the Z axis

perpendicular to this plane.

z i
OkeyQﬁL
Pt 05 Y

&

] 7

L'=mdMahb1

Node s

4{ Figure 5.
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Useful Coordinate Systems 10,

Figure 6. shows three positions of the tracking station in the
X, Y, Z coordinate system. Note in this system the satellite moves in
the X - Y plane. tR means time of rise of the satellite, t is time of
set, and t is time of closest approach of the satellite to the track-
ing station Fs (t) is the position of the tracking station, while
;3(t) is the vector from the tracking station to the satellite. The
unit vector H is in the direction of the satellite at time of closest
approach. (The present H has nothing to do with geodial height.)
/3 (t) is the satellite argument of the latitude.

Figure\7. shows a cross section in the H - Z plane.

Figure 8. is a detailed picture of the X - Y plane. L is a wnit
vector in the X - Y plane perpendicular to H. Note that since H points
to the direction of closest approach, we may assume that L is in the
direction of motion of the satellite at time t, ?S(t) is the satellite
position at time t.

Geometry of Path

Defining © and e as in Figure 7., Wwe now wish to prove the
useful formula:

sin & =(1-r

R

[ WJ 1l - r cos2 e + 1 sin e]
R,s

with

/P Po-]

Proof': .

From Figure 8., setting g

one has:

7, (t)

r§=r§+ pi -Eerc cos O

N
v
Q:\




Useful Coordinate Systems 11.

4 E arth's SP\'(\ Axis

Geometry During Satellite Pass (x - y plene = Orbital Plane)

Figure ©.
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Useful Coordinate Systems

% (te)

Geometry at Time of Minimum Slant Range

(H - Z Plane, Satellite motion into page)

Figure 7.

)
w
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Useful Coordinate Systems

13.

Geometry of Pass (Orbital Plane)

Figure 8.

Ascendin9 Node

SN NS SN NN OGN OGS Uu N U5 O On IS OGN GN O NS &8 NS s
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Useful Coordinate Systems 14,
and
sin 6 _ sin (1T /2 + e) _cos e
rp T, Ty

Now defining
,OS = ,Oc/rs and Tg,s = rR/rs
one has

(4) rR"fs=l+ p§-2pscos9
(B) sin© = ps cos e

Solving (A) for ps one obtains:

p = 2 2
s cos O -'\/rR’s-sinE)

Substituting in (B) one obtains the desired answer.

Pseudo Azimuth and Elevation

With the usual definitions of azimuth Az and elevation Eﬂ’
one encounters certain difficulties. Thus with an overhead satellite »
azimuth changes by 180°. To prevent this difficulty two new quantities

"pseudo azimuth" a, and "pseudo elevation" e have been introduced.

They are shown in Figures 9. and 10., and in Teble 1, where for-
mulas for converting from azimuth to pseudo~azimuth and from elevation
to pseudo-elevation are given.



Pseudo Azimuth and Elevation

z

0\,4 2 7)'-/- AZ

15.

NYORTH
N

SA7ELL 1 T £
SUbB -~ 7RAC K

- = 7 £
O:Z = (?17%) - /%Z
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Figure 9.
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Pseudo Azimuth and Elevation 16,
NORTH
SATE L )T L g\
Sutd-7ede g \
) e
0=E/Z .yz o = 7)"/—- E)'é
QZ‘?’-AZ ~ QZ=°2'77’—AZ
. . E&UAr DR
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=
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Pseudo Elevetion and Azimuth (Retrograde Satellite Motion)



Pseudo Azimuth and Elevation 17.

PSEUDO ELEVATION AND AZIMUTH

Azimuth Satellite Inclination

01 7T/2 TT/2<<1<iT
0<lA<T(/2 e=,’,‘-3'3!'%:-54 c = Ey a, = T7-A
W/e<<a<<Tl e = Eg e, = T-Ale=T-%5 a =-A
,(§AZ<§; =g e, = M-4alle=T -5 a =-A
j;:éAz<27T e=7T-E}_aZ=~AZ e=E/& az-:’]T-A

i

Elevation ) e Pseudo Elevation

]

>
"

Azimuth Pseudo Azimuth

)
n

Table 1.




Slant Range Vector 18.

. —>
We will now derive the coordinates of p (t) inthe H - L -2

coordinate system.

' —
Setting p(t) = ( pz, pH’ 'DL) ve first have, (see Figure 7.),

1

since ,Oz does not change with time,
pz == P.sin@=-r(t) 0 sin 0

where we have defined ps = pc/rs(tc).

For pH, one first has from Figure 8.
Py = |rs(t)| cos [)) - rR,xy(tc)'

Since we are dealing with nearly circular motion, we have:

| ) =
(a) rs(t)l = rs(tc) + 0(€) rs(tc) = ‘ rs(tc)
and from Figure 7., we have:

(B) R, xy(tc) = rs(tc) - D, cos 8 = rs(tc) [1 - Py cos 9]

Substituting (A) and (B) into the expression for pH’ one has:

pH = I‘S(tc) [cosA‘ﬂ (t) - (1— Pgeos 9)] + 1st order

Similarly for /JL, one obtains with the use of (A)

pL = |r(t)] sin A/B (t) =r(t)) sin Aﬁ (t) + 1st order

34
W
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Slant Range Vector 19.

Using the notation

A =1 - /Ds cos B

c(t) =1 - cosA/B (t)
one can write the zbove formulas as:

Py | 1 - = e(t)
Py =P | = (e) sinld [3 (t)

!

/DZ ‘ - ;Ds sin ©

t
correct through the zero b order.

For the scalar slant range, one obtains:

PN B @ B == en/p?s2cet)




Station Errors Expressed in the H - L = 2 Coordinate System 20.

(Please note that in the present series of notes that sometimes

the tracking station will be given coordinates X’I" Y’I" s standing

Z
T
for tracking, and sometimes the notation XR, YR ’ ZR will be used, stan-

ding for receiving. Both subscripts T and R refer to the same thing.)

We have previously defined the tracking errors Er 3 E(D and %
' T T

(These are sbout 1/4 kilometer in magnitude.) The corresponding formu-

las in H-L-Z coordinates are:

=T E + [sineE ?cosecosa E +
EHT R,s T ps rT 2 (DT

cos e sin a_ E ]
z A

I

sin a_ E + E cos &
EI.T Z (p'l‘ )-T A
EZ = rR,s [cos az E(DT - sin az EAT] +

+coseEr]
T

ps [sin e cos az Eq) - sin e sin az E/«k ‘
T T

These formulas are obtained by a rotation. It is assumed that

during the time of pass that the station does not change its position.

Errors in Satellite Position

We now discuss the motion of a satellite. We begin by giving
a few standard definitions.

a = semi-major axis (scaled by RO)
€ = eccentricity

i = inclination

W= argument of perigee

Q= argument of node




Errors in Satellite Position 21.
M = mean anomaly
MO = mean anomaly at epoch
b.d = no = mean motion

f
ﬂ: £ +{(J = argument of latitude.

true anomaly

Some standard formules from two-body motion that will constently be

used &are:
r(8)=a(l - €51+ € cos( [ - L))
tan f= V1 - € sinE/(cos E - € )

sin(p sin 1 sin/B
tan(k Q)zcoéitan/B.

We will assume that we already have a good idea of the coefficients
3 c’;l‘, Sﬁ in the eerth's potential, and that we have a good method for
integrating the equations of motion. Thus we will know the orbital

paremeters a, e, i, etc. quite accurately.

The problem of principal interest will be to determine small
changes 6 6 (S ;, etc. in the orbital parameters caused by

g
chianges AJ ’ Acn’ n in the earth's potential.

Thus if we define
( P (sin () m(sin )
AU: [;AJn—r-l--?—(-’L+ Z Z (p [C cosm/\ +
T n m
st sinmk]]
n

:U!:N
Lo 8 IS0

0

The equations of motion for the small changes in the orbital parameters




Errors in Satellite Position 22.

(assuming small eccentricity) become:

5s.2 28U +ae)
n.a C)ﬁ

: . YAV 3 AU .
(5€=-I-1—5 [Sln (/g-w)——-g-;————-f;cos(/g-(,.‘/) ""'é"‘ﬁ"""‘“]*‘O(E)

ro

- O

0

g .1 p 20U o(€)
x & azcoﬁ 3 . +of€

Ny
sinroég.) = 12 aAU + 0(€)
noa 31
u_l_[ _uy 2 bu
€0W- 5 (f-w) ===

3 AU_ ] + 0(€)
0 2 SABUﬁ .
%{(6M+6U)='%_§'n' —cosi6Q=0(€)

a 0 noa aa

2 (S - 1)

(This last combination of variables is to avoid terms containing 1/ € .)

Note that in these equations if AU = 0, then a solution would

(Sa: 6&0 E(S(Aj = €6LJO
5o 6, 5969,
51~ (Sio 6M+(5 W = 5340-%—;;&-9n0(t«-to)+

terms of higher order

where the subscript O means initial (constant) values. Thus in or&er

to fit data better, it is always possible to add constants Oa e
5 { o ete. -0
o :




The Term J3 23.
As an example of the use of the above equation, we note that if

a change [SJ% is made, the orbital parameters change in the following

vey:

éia = second order change, i.e., no material change

A . 3
Se __fiﬁ_j:.ié_}.sinw+o(€_.%_l)
. 2

Ia
3 sin 4 /
[iJ 512 i cos (L) +0 {€~2 ZE;Q
2 \ 2

n

N

c0w =%

, J
Si, OS2, § M+(/) anr o0 €—A3——1
2

General Rules to Order Unity

One can list the following effects of changes ZXJn, Z&Cﬁ,

Z& Sﬁ on the orbital parameters:

1. [&Jn for n odd give long period changes in € and L/ .
2. [&Jn for n even give

a) secular changes in (/, g? , M+ (J/

b) 1long period changes in (J, M + (/

¢) short period changes in all orbital parsmeters.
[& Cg, ZX Si give changes, the period being

)

sideral day - nodal rate
m

Transforming Changes into H - L - Z Coordinate System

As a first step to transferring changes into the H-L-Z coordinate

242




Transforming Changes into H - L - Z Coordinate System 23a.

system, we will transform into the moving coordinate system (Sr, 6 ﬁ,
Z (pointing to the satellite) shown in Figure 11. (S A is usually
called long track, and (Sr cross track. They are in the plane of

the orbit, while Z is perpendicular to the plane of the orbit.

!

8%/ P\Mea& Ofbit

% Figure 11.

The basic. formulas are:

(A) 6rs=(Sa-a[6€cos(ﬁ-w)+€6usin(ﬁ’U)
o €)

(B) (5/[;=a[((sM+6u)‘*2 56 sin(ﬁ-(,u/)-
2€5U cos(ﬁ-w)+ (SQcosi] + 0(t)

(c) 6Z=a[51s1n,8- HN cosicosﬂ:l
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Transforming Chuerres “nto H - L - 2 Coordincto System 2k.

To derive (A), one proceeds as follows:

a(1 - € 2 0
(SrS: 6|:l+ E‘(lcos(Bl-LJ)]=l+€ COS(aﬂ"w‘) )
a(l-€2)
[l+€ cos(ﬂ-(,\./)]e

X Q

with

Q = (Sé‘cos(ﬁ-w)-Gsin(ﬁ-u)(éﬂ‘éw)'

Now since

50 - HSw+w)+2| de sin (3 - () - €6LJCOS([)’-LJ)]

+0(€); € (5 can be neglected.

Thus to O( € ) formule (A) is verified.

/ /
Yy
e

Figure 12.

#

To derive formulas (B) and (C), one must first use the local

inclination I of the orbit, and the local precession of the node

r_ cos (p fS ) at ((D, A ) to obtain:
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The Term J3 _ 25,

6£=T56Q cos(bcosI+ fﬂ-(éﬂ )
6Z=-rs(SQcos(bsinI+fz(6/B )

Now using the formulas:

tanI=tanicosﬂ

cos i =cos I cosd)

and looking at Figures 6., 7., and 8. to obtain fl( (Sﬂ ), £, ( 6ﬂ )5

one finds

(Sﬂ:rSéQcosi +rs(5ﬂ
5Z=-r55 Q sinicosﬁ +rssin[3(5i

Finally using the previously cited formula for 6 ﬁ s
one obtains the desired result.
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Deviations in H = L - 2 Coordinates 26.

We begin by listing the deviations that would take place in the
6 - 6 VK (‘5 g coordinate system if we have a deviation AJ 3 in
s s Tz

J3r,

First setting
Ga
c
Os

C

—a[ 5€Ocosw(tc) - ( €O(SUO) sin(_,j(tc).|

"

- ( AJ3/2J2) sin i -

a[ be o sin W/ (v) + eoﬁwo) cos w(tc)] )

we find the deviations at time tc as:

61‘0 (Sao+(sAc cosﬁc+ (SBC sinﬁc

L]

St a[tﬁ(Mo+LJo)+6 roosi.l -2/3(5]3(:-

¢ i

2(5Ac sin/Bc+2(SBc éosﬂc
'(SZC - 5Qosinicosﬁc+ (Siosin ﬁc’

L}

and finally the deviation at an arbitrary time (assumed during one fixed

pass) is: (with C(A/}) =1 - cos ( Aﬁ ))

n

5,

{6Accosﬁc+(53c sin[}c]c(lkﬁ)
6%~2[6Accosﬂc+ Gs, sin 3 °j sin \ 3 -
2| -On e B+ 6, con ] )
62,0 | 6y mmrmmfl v G, o0 f3,] smOf -

Oz, C(Aﬁ ) 245

6rc+{ - éAc sinﬂc+ 6Bc cosl/:}cT sinAﬂ-

oy

[

5,




Deviations in H « L = Z Coordinates 27.

The things to be stressed in these equations are:

1. Always have changes in elements.
2. Change in character of time dependence.
3. When the elements have only long term effects, then the exam-

ples are general.

L\
Sy
¥
f-’tc /L/
Figure 13.

It is clear from Figure 13., that the (Sr 5 61 s Z coordinate
system agrees with the H-L-Z coordinate system at’t = tc§ For other
times, one must rotate through an angle of A ﬂ to put everything
in H-L-Z coordinates. Using our definition for C(A /3 ), one obtains for
the deviations:

Hs(t) 61'5 - (S/Z' sinA[} - CSrC(Aﬁ )
Ls(t) = 6/@5 + 61‘8 sin A/B - 6LSC(Aﬁ )

z(t)

6zs(t)n

Changes in Slant Range Vector

We can now combine our previous results into the change d)ﬁ

in the slant range vector, where 6 ﬁ = 6—1—‘) - 6?
] R
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Changes in Slant Range Vector 28.

One finds for small A ﬁ that in the H-L-Z ccordinate system one

O F(ABY=0 P+ 6B, em(AL)+0 P oobB)

with the H-L-Z components of 6 Z? o’ 6 ﬁl and Sﬁa being

h
Ol
n
R
]

3 6rc+3éAC cosﬂc+3(53C sin[}c
OF, - - 0L,
. 5a,

- dj’c - LSAC sin[} ot (SBC sin/Bc
6rc-2((SAccosBc+ 5Bcsin/B <)
6Qosinisinﬁc+(§rocos/@c

Types of Data

1. Rader that measures both range and angle accurately. If

such a system existed it would give one all nine components

o« 0L, 0Py OF,
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Types of Data 29.

Range only from radar.
Angle only from optical instruments.

L, | Range rate or Deppler. For a study of this last type of data
see W.H. Guier, Studies on Doppler Residuals - 1: Depen-
dence on Satellitz Orbit Error and Station Position Error.

TG - 503, June 1963, Applied Physics laboratory, The Johns
Hopkins University, Silver Springs, Maryland.

Range Data

We will begin by studying range data. Note that

S _ L[ =.= _ =, ~—
£OP=1EC (D P = P 5p
We previously derived formulas for ﬁ and in the H-L-Z

coordinates, so that one easily obtains the following formule for

the range only datas

r
]

_.QQ_Q = L [cos@‘éch’Sine (S,Ocz]

+ [_6,0 CL+ ps(cos(_% (S /O.LHa sin © (Splz)] sinAE
+[20 Py 0P + Pleos8 Op, ~omsip, )] alf
+ o((A 13 %)

Note in these formulas CS p o means tne H component of L\ E)cg)

H
-
6 p ]‘L means the L component of (S p 1 ete.

Figure 14. shows the behavior of a few functions on A /B o

With this type of @nalysis, cne can separate out the various components

In 06 P /rs"



Renge Data 30.

Figure 1li.

Teble 2 1ists the three principal tyves of data, namely, range
o nly, Depoler, and angle only date versus the three types of time
dependence, constant, anti-symmetriz and symmetric. The equations for
range only wers previously derived. Those for Doppler and for angle

only are mew2ly Ligted. To derive the latter two, one should use the

/[j , the uwnit slent roange vector]

VR R -
)_(5u 00D ,ol {Qcéﬁ-ﬁ(pépﬂ




Table Two 31.

A
It should be remarked that althoug1(5 ;) has really only two components
A
{those perpendicular tc ;) ); that in Table 2 these two components have

beern resolved along the three coordinate axes H-L-Z.

Several interesting facts are apparent from the table.

1. Any competent system will resolve at least through the anti-
symmetric data.

2. Doppler and range only data are about equivalent in data content.

3. Optical data and radio interferometer data as a function of

time will yield a vast amount of information.

Collections of Passes

So far we have only been concerned about one pass. When one consi-
ders several passes statistical guestions naturally &arise. Since one
is concerned with very meny parameters, it is egsential to have a
large amount of data tobavoid singular variance co-variance matrices.
It is felt that in the present state of affairs that the signal to
noise ratio is high, so that elsborate statlistical routines are not
necessary. In fact; besldes least squares some sort of minimax

routine would bte useful.

Typical Problems

Some typicel problems that the foregoing theory could be, and is

teing applied to are:
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Typical Probiems 33.

1. Location of islands in & large body of water, e.g., Hawail.

Since one can track satellites both from North America and Hawaii,
it would be possible to locate the tracking stations in Hawaii very
accurately.

2. To determine coefficients Jn’ Sﬁ, Ci in the earth's potential.

3. To locate, for example, the European datum with respect to the

C. G. of the earth and with respect to the North America datum.

Other Problems

A list of references is attached of other problems such as refrac-

tion DProblems in radar data, how to eliminate spurious datea points, etc.
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PRACTICAL ASTRONOMY
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Professor P. Herget




Practical Astronomy. 1.
I. Celestial Sphere and Spherical Coordinates.

Astronomy 1s the science which deals with the bodles
of the universe and in particular with thelr positions,
motions, constitution and evolution. The observation of
those bodies such as stars (self-luminous bodies), planets
(bodies revolving around a star), and satellites (bodies
revolving around a planet) 1is the concern of practical
astronomy.

All the gelestial bodles will appear to an observer
on the surface of the Earth as lylng on a spherical shell
overhead, rotating about an axis through the observer. -
This imaginary sphere of indefinite radius is termed the
celestial sphere and all the bodles in the universe are
assumed to be on the surface of the sphere. Thus it is
natural to use the spherical coordinates system to define
the positions of stars, planets or satellites in terms of
the two angles of the system.

One system used for tracking artificlal satellites,
which we shall call the local coordinates system, has the
zenith as the local vertical and the horizon (basin of
mercury) as the base plane. Choose any point on the hori-
zon as the zero point -- I prefer the north point; we
then have spherical coordinates O, A, H (Fig. 1).

Draw a great circle which is a circle on and has the
same radius as the celestlal sphere through the satelllte.
Its position is then located by two angles. The angle H
measured from the horizon is called altitude; the angle A
on the horizon measured from the north point toward the




z (zenith)
~

Practical Astronomy. 2.
east 1s called azimuth. /
The cartesian coordinates -
XY Z are given by . /75

W

North

X =/ocosHsinA
Y =/0003HcosA . Loserver k{/// \/
Z =/0sinH (1) E A
WK Fig. 1
For astronomical observation, radius/O is unobserved.
This system has been used in Project Vanguard, known
as MiniTrack system, and in Project Mercury. In the former,
two directlon cosines 1 and m, oriented along N - S and

E - W respectively, are measured. Thus

Q cosHsinA
m = cosHcosA : ' (2)

The third direction cosine 1s calculated from L and m

n = sinH =WJ& - 12 - m2,

which becomes highly 1ndeterminate when the subject 1s
near the horizon.

Since the Earth's surface 1s approximately elliptical,
the local vertical should be oriented along the radius of
curvature as shown in the figure. The center of the Earth
as measured from the local coordinates X Y Z on the surface
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Practical Astronomy.

is positioned at

X=0
Y =f9sin(¢ - 01) (3)
Z = jpcos(¢ - @)

The difference between

the two angles 1s actually
very small because the
major axis of the Earth
ellipse 1s only about 13
miles longer than its
minor axis.

3
Pole Y
.. z
%
0
o
1 /0 ©
¢
C
F

Locus of cenfer of CU—"WL‘/U-"'G
(EVo/ufe_)

C - center of earth
F - center of curvature
Fig. 2

The angle ¢ 1s called the astronomical latitude

and §' the geocentric latitude.

The former 1s preferred

in astronomical observation, and the latter is used in

map-making.

Local terrain also has an effect on the determination

of zenith.
to west,
is known as local anomaly.

On a mountain slope inclined upward from east
the local vertical will tilt to the east.

This

To determine the astronomical longitude and latitude

of an observer, we need another coordinate system.

Due

to the rotation of the Earth, the universe seems to revolve
around an axis through the observer and parallel to the

Earth's axis.

This axls meets the celestial sphere in the

north and south celestlal poles, and the great circle

<3




Practical Astronomy.

midway between the poles is

Fig. 3
0 - Astronomical
latitude

H - Hour angle
PSZ - Navigation
triangle

the celestial equator (Fig. 3).

é (“\Qo\e’ Z Zeni‘”\
AV

Y

[
w N\
Srar
-~ 5 //75/

Using the plane of the celestial equator as the base
plane, and choosing the vernal equinox, which is the inter-
secting point of the celestial equator and the ecliptic
(the path described by the sun on the celestial sphere),
as the zero point, we have the celestial equatorial co-
ordinate system. The position of any star or satellite
is measured by the right ascension (angle X ) and decli-

nation (angle O ) (Fig. 4).

Since the axis of the Earth

precesses slowly, the equinox is actually moving westward
along the ecliptic (Section V). The vernal equinox of
1950 is now taken to be the standard equinox.




Practical Astronomy. 5.

Fig. 4

;f_ Vernal equinox
S - Star

(X - Right ascension
6<- North declination

Measurements of the declinations and right ascensions
of stars are of primary interest to many observatories,
notably Yale Observatory, for the purpose of compiling
star catalogs. Equatorial coordinates of all planets
in the solar system from 1650 to 2050 with respect to the
standard equinox were all computed by Eckert, Brouwer and
Clemence (Astronomical Papers of American Ephemeris, Vol.
XII) around 1950. They are now available 1in punched card
and tape forms. . -

For celestlal measurements, the observing station,
although 1t 1s on the surface of the Earth, may be re-
garded as being 1n the center. The movements of stars so
observed are known as proper motion. Furthermore, for
star observation, we can even shift the station from the
center of the Earth to the center of the Sun. If the dis-
tance from the Earth to the Sun is taken to be one

ZUL,




Practical Astronomy. 6.

astronomical unit and represented graphically by one inch,
then the distance to Mercury is 0.4 in.; to Venus 0.7 1in.;
to Mars 1.52 1n.; to Jupiter 5.2 in.; to Saturn 9.5 in.;
to Uranus about 20 1n.; to Neptune 30 in.; and to Pluto

4O in. But the distance to the nearest star outside

the solar system 1s about four and one-quarter miles (on
the graph) away. Thus one is justified in considering the
center of the Sun as the observing station. However, for
observation inside the solar system, we cannot shift the
center arbitrarily. ‘

With the origin at the center of the Earth, an
equatorial coordinate system can be used to locate the’
observation station on the surface of the Earth. Great
circles passing through the poles of the Earth are called
meridlans. The one passing through the vernal equlnox
is chosen to be the zero hour meridian. The height of
the observing station above the equator is measured by
the angle ¢ known as astronomical latitude¥*. : The angle,x
between the zero hour meridian and the meridian of the
station, measured in siderial hours, is the astronomical
longitude.*

*This should be distingulshed from two other systems,
geographic and celestial. The zero hour meridian of
geographic longltude passes through Greenwich, England.
The difference between geographic and astronomical latil-
tudes 1s shown in Fig. 2. Celestlal longitude and lati-
tude are measured along and above the ecliptic
respectively.
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Practical Astronomy.

Fig. 5
C - Center of Earth

>

A sidereal hour 1is one twenty-fourth of a sidereal "
day, and a sidereal day is the period of time required for
one complete rotation of the Earth with respect to the
equinox, rather than to the Sun. The latter 1s known as
a solar day. Since the Earth revolves around the Sun
as well as rotates about lts own axls, there 1is one more
sidereal day than solar days in one year (Fig. 6). A
simple conversion formula is given below.

Sidereal time 66.2422
Solar time %6§T§H§§ = 1.0027... (4)

Adoption of sidereal time
leads to the simple rule
that the right ascension
of an object is equal to
the sidereal time at
which 1t transits the
meridian.

202 Fig. 6




Practical Astronomy. 8.

Coordinates with the center of the Earth as their
origin will be designated as geocentric; with the center
of the Sun as their origin as heliocentric. Conversion
of one to the other can easily be done if the geocentric
equatorial coordinates of the Sun, pr the solar coordinates,
are known.

Since the published ephemerides of solar coordinates
have the center of the Earth as the origin, whereas the
observations are made from the Earth's surface, a slight
correction for the parallax 1s required. In Fig. 5,
if the distance CO from the center to the surface of the
Earth is expressed in astronomical units, the corrections
to be added to the solar coordinates are

(Sx = —Acos,{

Oy = -Asin)
Oz = -4266 x 10785 1n¢
A = CF = 4266 x 10  “cos¢ (5)

Another correction owing to the aberration of light
should be noted. Aberration of light is caused by the
finite velocity of l1light and the motion of the observer.
When the Earth has a component of motion perpendicular
to the line of sight, the light does not reach the Earth
along the line Jjoining the Earth and the object, but along
the line Joining the Earth and the point where the object
was at a previous time when the light left it. Thus the
observed position of the object is in advance of the com-
puted position given 1n ephemeris by

angle X = tan 'l(VE/VL),

i\
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Practical Astronomy. 9.

where VL is the speed of light and VE' is the.veloc¢ity of
the Earth perperidicular to the line of sight (Fig. 7).

ob[ecf.’
Voo

Vo

/ “Eorth

Fig. 7

We now turn -to.therconversionuaf loged:and.equa=a -
torial coordinates. Let 1, J, k be the urilt vectors
along the geocentric equatorial cartesian coordinates
X, ¥, Z2, and fl\:, :T\, ﬁ be the unit vectors of the geocentric
local cartesian coordinates X, Y, Z. From Fig. 5. it can
be shown that

5:,: = -sin,\lj\. + cos A:j\
A
K = cos¢?‘os AT + cospsin A g + sind)f;
?=kx1I
A A A
= -sinfcos \ 1 - sinfsin } J + cosfk (6)

An object can be located by position vector r with different
components in two coordinate systems:

A N N
r=xi+yj + zk
A A A
XI + ¥YJ + ZK.
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Practical Astronomy. . 10.

Arrange the direction cosines between unit vectors in
matrix form:

[liJ] =| -sin) cos ) 0
-sinfcos) -sinQsin) cosf
cosfcos A cosfsin | simb . (6a)

Then the transformation of one coordinate to the other
can be performed by matrix multiplication*:

- 1.0
L, Y 44 X X
Ly Ly y|=| ¥
Y31 Y32 Y3 | 2] L%
and |_ J o = (7)
1,4 9.21 0.31 X X
Lo Y M3p Y isly
113 §l23 133 1L Z 1L z ]

Note that the secbnd squaré matrix 1s the transpose of the

first one, and the inverse of matrix -Qij] equals the trans-
L .

pose*¥* because the direction cosines satisfy the condition

Ly, = Opn-
*IT a and b are the elements ol matrices [a, .J] and
o}

1) J] 1§~espect1\’rely, with 1 indicating the num e £ rows”
and j the number of columns, the product of these two

matrices is [c j [zxi'ﬁ II:D = [c jn’ with e¢,, =) . a, b.,.
The multiplic[a% on i]e oi“ﬂCraco[vi with ciiJ= z:‘éii‘ﬁ -
has lost ground since the development of ele'qéron C

comﬂ?ters.
¥¥The transpose of a matrix is obtained by interchanging
the rows and columns. The inverse of a matrix [9‘1] )
denoted by [liﬁl >, 1s defined as J

Rif Pog-t = [614)
where Sij ={é i- : g
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II. Calibration.

Astronomical observations are made with the aid of
telescopes. An astronomical telescope must be calibrated
before it can be used to locate accurately the position
of any object. Artificial satellites which travel at a
fast speed around the Earth are difficult to track by
optical means. In such a case, radio waves transmitted
from the satellite are picked up by a ground antenna,
Just like optical waves being collected by a telescope.
The orientation of the antenna when properly mounted
ylelds the angular position of the satellite. The ground
antenna alsé must be calibrated.

Ground antennae in the MinliTrack system are cali-
brated against the stars of known positions and an air-
plane flying overhead. The plane is equipped wilth a
strobe light and a radio transmitter. The radio waves
are received by the ground antenna, and the strobe light
as well as the stars in the background are recorded by a
telescopic camera at the center of the antenna.

Two antennae, one oriented north - south, one east -
west, are used to record the direction cosines of the
radio transmitter on the airplane. More accurate readings
are obtalned from the position of the lmage of the strobe

light on the photographic plate relative to the background
stars.

Let & and m be the correct values of the two direc-
tion cosines as determined from the image, and rn and T
be the readings taken by the antennae. Equations used
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for callbration are

2

1=rn+a+bn+cm+dﬂm+e12+fm
m=r +a'+ b'l +cm+ d'im + e'd® + £rm° + g'm3,
(8)
where a, ..., f and a', ..., g' are calibration constants.

These constants are calculated from a large number of
values (over 700) of %, m, ry and r_. After the cali--
bration 1s done, the antennae are used to track the
satellite, equipped also with a radio transmitter.

IITI. Reduction of an Astrographic Plate*.

A photographic plate which records the images of
stars and other objJects as viewed from an astronomical
telescope 1s called an astrographic plate. The plate 1is
usually centered at a star (point C in Fig. 8) with known
declination and right ascension. On the plateé, projection
of another object (point S) is measured from the center. '

Let the plane CL'S' be tangent to the celestial
sphere at point C, and let f)O’ A and D be three mutually
perpendicular unit vectors at i€, With 0 normal to the tan-
gent plane and A parallel to the xy plane (Fig 8). We
want to determine the position of the star S proJected
onto the plane.

A

. N
The direction cosines of the unit vectorslﬁ3o, A, D

¥References: Hamburger Sternwarte, Band 5, No. 19.
- W.M. Smart, Spherical Astronomy, Ch. 12.
Turner, Monthly Notices of the Royal Astronomy
Society, v. 54, p. 11 (1893).
Koenig, Handbuch der Astrophysik, Ch. 6.
Yale Observatory, v. 9.
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A
and © which are along the radial direction OS are tabu-
lated below:

A N A A
/%0 A D °
X [ cosfh, o) -8in 54 cos § cosA\ X
v 0 1 0 cos sinA X
z | sin (50 0 cos ) 0 sin &
A
A
A
£

Fig. 8

The position vector

6§'=/o/3=/30+§ﬁ +7Iﬁ

where § and TI ,» known as ideal coordinates, are to be




Practical Astronomy. 14,

calculated. Note that

£ hxD-a
/3 1
P (sin(Ssin(So + cos 6Ocos(5cosAO()
=/0 [cosAé - cos 600086(1 - cosAXX )]
where A/Q/O 6 - (S§O’ 6 .ACX .
A =/Ocos sin
P b7
= 0 (sin(Scosé - cos CSsin(SocosAa )
=0 [sinA(S + sin(S cos(S(l - cosACX)]

o O
]

§>><

Thus
§-— cos §sin A (/D
77= [sinA(S + sin O cosé(l - cosAO()]/D
=cos A\ - coséocosé(l - cosAo() (9)

Now cansider the tangent plane to be the photographic
plate. The projected position of star S on the plate
relative to point C can be deduced from equatlons (9) if

& and A\ O are given.

On the other hand, the inverse procedure of deter-
mining the right ascension and declination of S' from an
astrographic plate is not so simple. First of all, be-
cause of the centering and orientation error of the plate,
the refraction of light in the atmosphere, and optical
distortion of the instrument, the recorded position of S
on the plate with coordinates X, Y 1s not the same as
the ideal coordinates f » TI on the tangent plane (Fig. 9).
Next, even if the 1ldeal coordinates are known, calculation
of A and'A § from equation (9) is not straightforward.
We shall first discuss various sources of errors on the
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plate.

The misalignment of
axes and center point of
the photographic plate
will shift the coordinates
of S' according to (Fig. 9)

§'= a + bX + cY

T(= a'! + b'X + c'Y,
(10)

where a, ..., c¢' are constants.

[\
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The tilted plate, when centered at the star C,
will shift the line of sight from OC to 0OC' (Fig. 10).
The unit vectors A and D' along the axes on the tilted
plate are rotated by a small amount about the unit vectors

ﬁ and ﬁ on the tangent plane. We thus have

Al = Ao - DA - oD
Q07 Lo~ PR -4
A =8 + p/ﬁo
A A A
D'=D+q/30,

where p and q are magnitudes of rotations. Noting that

/i & §- /Og/é\. a' = §.'
A P2 B =T
and setting
P2 fPo=1
we have
£ = P2 Gonfo) = pel o+ 2/ o)
n'=prap (D+apy) =/92(§//01 *a/0,)

1= 0, B (B - pA-@)‘ﬁau-pg-qn>

Finally, where higher powers of p and qQ are neglected,

/02//01=1+p§+‘”l
§-§ =preg®+aly,
&-¢ =a+pn+an”. (11)

This result shows that the error due to the tilt of the
astrographic plate depends on the magnitude of tilting
and the quadratlic power of the coordinates.
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Refraction of light in the atmosphere causes the
images to be displaced systematically toward the zenith.
The optical distortion in the instrument is related to

the cubic power of the distance from center C on the plate.

All in all, we ¢an compensate these errors by letting

§-—a+bx+cY+dXY+ex + £X (X2 +Y2)
N=a' +D'X +c'Y + a'XY + e'Y2 + £1Y(X° + Y°),
“(12)

where a, ..., f and a', ..., f' are called plate constants.

These constants are calibrated from a number of stars
with known declinations and right ascensions, from which
the ideal coordinates can be computed from equation (9).
Their corresponding coordinates (X, Y) can be directly
measured from the astrographic plate. Inserting these
sets of values into equation (12), we then can calculate -
the plate constants.

Once the plate constants are fixed, the same equation
will be used to compute the ideal coordinates of any
unknown object recorded on the same plate. The right
ascension and declination of the object are then cal-
culated by applying an iterative method to equation (9).

.

Equations (9) are rearranged below:

A =sinA\§ = §D - sin (Socosé(l - cosA(X)
éosA(S =Vl - sin?‘A(S
cos O = cos (SocosAé - sin 6OsinA6
B = sinAIX = §/Dcosé
cos \ X Vi - sirﬁa (9a)
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Initially, set AO( and A(S equal to zero and compute

A, B and all other quantities in order. Call the results
of the first approximation A,, B,, etc., repeating the
process until the nth approximation with

2.3 ro. )2 2
(8, - &, )% (Byin B pp)= ST EC €
is rgached. Tﬁe € 1s a preassigned small tolerance,
usually 1077, |

Astrographic plates of the entire celestial sphere
have been made by qbservatéries over the world under the
project initiated about 1890. Each plate covers two
degrees 1in latitude and in longitude. Every quarter of
each plate is overlapped with another plate so that the
entire sphere 1s covered twice. Since plate constants
are different from station to station, the equations used
to convert plate coordinates to idegl coordinates also

vary.

In the Publications of the Hamburger Sternwarte, Band
5, are given formulas and tables for the uniform reduction
of plate measures for all the zones of the Astrographic
Catalogues and the conversion from'the rectangular ldeal
coordinates to right ascension and declination. Use is
made of the right spherical triangle ZLS and Napler's
Rules, namely o

sin = cos ° cos (opposites) = tan ° tan (adjacents).

In the Hamburg notatlon,

w
X
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N = tan(d - 60)

sin ) = sin d cos V

sin(90 - AX ) =
’can(s =

cos ) =

sin(90 - d) =
tan AX =

d =

sin(d - 5)

0

[l

19.

s §cos(d -6 O) = tan | = tanLS
tan Otan(90 - d)

tan d cos A X

cos d cos Ysec/\ X

tan Ytan(90 - A )

tan)y sec d = gcos(d - 6o)sec d
'(1L - N)sec d ’

0o+ M - T(N)

= 8in d cos ) - sin§cos d
= sin d cos d cos U[secAO( - 1]

%sinzd(l ~ vers )j)[secAO( - 1]

d - DsinzD

For the 2° x 20 plates of the Astrographic Catalogue,

tables give values of

N and D as a function of n and
another table gives the conversion from tan A (X to A(X

"Fig. 11

2.4
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IV. Dependences.

When the unknown obJject 1s surrounded by a cluster
of stars with known poSitions, the 1deal coordinates of
the obJect can be computed from those of the stars. Let
r be the position vector of the unknown objJect and fl,
Eé, and 53 be those of three stars, S;, S,, and S3~
(Fig. 12). Then

r = Dlrl + D2r2 + D3r3,

where the D's are coefficlents.
On the astrographic plate,
taking the image of the un-
known obJject as the origin,

we have three equatlons to
determine the coefficilents:

Qs{rosr'apﬁ LC Plate

Dlx + D2X + D3 3 = 0 " 1o
DYy + DY, + DYy =0 g.
D, +D, + Dy =1 (normalized).

The ideal coordinates of the obJect are then given by

§=06, + 0,85 + 03§

T(= Dlnl + D27'(2 + D37(3.

This method has the advantage of avoiding the cali-
bration of plate constants¥*. ‘However, it does not yileld
good results when there are no known stars closely sur-
rounding the obJject.

¥Arvend: Bulletin of Kstronomy of Brussels, v. 1, pp. 124, 199.

te
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V. Precession.

As a result of the attraction of the Sun and Moon
on the Earth's bulges near its equator, the Earth pre-
cesses very slowly (approximately one complete rotation
in 26,000 years) about the axis perpendicular to the
ecliptic. This-precession Will ‘then ccaume the equinox,
which 1s the intersection of celestial equator and eclip-
tic, to move. The declination and right ascension in the
celestial equatorial coordinate system will thus change
from time to time because of the changing zero point.
These changes will now be computed.

Fig. 13 shows that

>

the equator precesses _
A ~
about the axis K, per- ' 09‘
‘ -

pendicular to the eclip-
tic, with angular ro- - ,)C%,
tation A©. The direc-

tion cosines of the unit

A A A A
vectors A, D, K, S,

referring to the celes-
tial equatorial coordi-
nates, are tabulated
below.
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A A A A
K S , A D

22.

As

1224 B

Koy

0 cos Jeos(X 8inY —sin(Scoso( Ae(-sin€ sinf

0 g

"-cos € cos O sinX)

-sing cos §sin(X cos(X -sin SsinoX  Aecos € cos OeosX

COSE sin$ o cos O

Aesin € cos (S cos X

The last column in the table lists the components of the

change of unit vector § due to precession with

Ag = Aefc X §

A A
The components of the same change along A and D directions
yleld the increments of (X and CS of object C with

and

As - % = Aé(sin€ sin§sinX + cos€cos(5)
A8 - D= Ne(sin€cosX) =A§ ,

ﬁ(tx = ﬁe (cos € + sin€ sinXtan(§)

ﬁé = 22 (sinCcosO()

In the limit, as time t approaches zero,

=m -+ n sinO(tah(S

= coséAO(

(14)

where m and n are known constants determined from the rate

of precession and obliquity € .

+3.07327 + 0,0000186(t - 1950)
= +1.33617 - 0.0000057(t - 1950).

s B
o

1A
~

In terms of second / year,
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VI. Astronomical Refraction*.

Because of refraction in the atmosphere, the light
path from a star to an observer is a curved one. The
star appears to the observer at a position different from
its actual one, being shifted toward the zenith.

Let the altitude of a star S be /2 - ( , and the
index of refraction of the atmosphere be - Consider
the atmosphere to be composed of many layers as shown

in If‘i&» 14, A2 (zentth) » <
AN Z
hen Lo g'
hy b--2
ha. |
\
h N\
! W X%'g
ol  ? hortzon
Fig. 14
In layer 1, :
4LOR, = ([, - 1)tan(
LR, = OR; tan(LLloal)
= (ul - l)tang ( hl- - ho)sec €
In layer 2,
LR, = ([, - 1)tan { * - hy)sec( + LR
= tan C[(uz—l)(h 1)+(/.Ll-1)
- h )] :

*Smart: Spherical Astronomy, p. 60,




|
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Finally, at point P,

L R —tangz um—l)(h‘--ml)} g‘ﬂi—g

If W is the unit vector perpendicular to the ZS plane,
then W X Q 1s the unit vector along thg PR direction

A A A
W = S x Z
sinC
o8 Sxs 8B (BB rh . eentd
= x o= - = -
WxsS -SinC X S sing cscCZ cotCS

Then the position vector of P is

OB

A M A
R RS + LmRm(W x S)

a vkl - 1)(h - b - o)
= RyRy[s + === hmhm Bk

(secCQ - g)],
| (15)"

from which the angle POS can be computed. Several typical
values of the angle POS at 45° altitude are given below.

h(km)|024681020

ZP0oS(sec) 58 53 48 44 4o 36 23

VII. Occultations.

The hiding of .one object in the sky by another,
especially when a molincpapssseinsfrapsrofift stast.or.a o
planet, 1s known as occultation. '

Imagine one s"c‘anc‘iing on a star looking at the Earth

along the z axis (Fig. 15), seeing a moon sweep in front
of the Earth. Take the meridian directly facing the star

2.9
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An observer on the surface of the Earth with
local hour h (longitude from central meridian) and lati-
tude ¢' will have coordinates¥ ' :

§
N

on the x - y plane. If the radius of the Earth IO is
taken to be unity, the moon's radius is then 0.2725.
When the observer is on the periphery of the moon,

I

,ocos¢)'sin h
/o(sin<p'cosé - cos$'sin §cos h) (17)

(£-x2+(n-y)? = (0.2725)% (18)

Occultation can be utilized in two ways. If the
observer's position (longitude and latitude) 1s exactly

known, he will be on the rim of the moon whénever the above

equation 1s satisfied.‘ Thus one can determine when the
occultation will take place. On the other hand, from the
observed and calculated occultation, the position of the
observing station can be determined.

*The derivation of (17) is the same as thak of (%). The
x and y axes In Fig. 15 correspond to the A and D.vectors
on the tangent plane of Fig. 8. The angles h, § and

' (not shown) qn Fig. 15 correspond to angles A(x

(50 and § on Fig. 8 respectively. ’

e
Q
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as the central meridlian which has hour angle HO measured
from Greenwich zero. At time TO’ the center of the moon
passes through the central meridian at the point (0, fYO)
on the x - y plane. After an increment of time [Xt, )

the center of the moon will be at

b 4 =.i[§t
y = YO + i’At: (16)

where x and y are the rates of change of the moon along-
the x and y directions. Given Hy, T, Y, x, and ¥y, one
can compute the position of the center of the moon at

any ‘time.

Fig. 15



252




Orbit Determination

by
Professor Paul Herget




284

2Re




Orbit Determination.

I. The Method of Laplace.
A. The Preliminary Orbit.

Figure 1.

S: the position of the sun, origin of co-ordinate
system

C: the position of the newly dlscovered object
E: the position of the Earth

Suppose there are three observations of a new object
made one day apart. That which 1s observed is’

A
Pi = (cos oy COS 51, sin«, cos Si, sinJi) i=1,2,3.

The basic equatlon connecting the three positlon vectors
in Figure 1 1is

(1) f-=f>(3-—ﬁ s wherepﬁ= e ,pP= l‘6|

(% B sl .
A RSS
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Differentliating,
- N -
4f _dp 5, o 90 _ g
(2) " aEPTPIE - :;®
2= 2 A 2A o
A do d a0 _ d°R
(3) + 2 + 0 -
a2 a2 at Eg ©atd | gtl

dt
) a°R A _dp . s 1
—IV;P X at -é—t-g + P X a-te R '—3‘
AN . N A
where@x%—@"@ =O=/\det g

AN 2/\.
Dividing Equation (4) by [(3 X %—,‘;—3 - g :\ , we have

an equation of the form
B
(5) = A +
P -3
From the geometry, it 1s also true that

(6) r2=P2-2[6/3'f€‘p+R2
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To find A and B in Equation (5), first consider the
Taylor serles expansion for(f)\o

2
(7) [/5'= @Of Atﬁc'ir A" o~wm

27 Po

If we truncate the serles at thls point and let the orilgin
of time, to’ be the time of the second observation,
we can state the following.

(t3 = tg) (W,1) = (5, - t,) (W,3)

Wo —
t3 - tl
_1_w LU LW:3) = (_u:l)
2 ¥Wpo t, - ¢
3 1
W. - W
where (wW,1) = % — to
1 o]
(w,3) = 13 ~ o
3 -

and 'Wi stands for each component of F§1 taken separately.

L and"wd", therefore, give the components of

A 24
d(?o d Po
and -~ )

dt at

The other gquantities needed to calculate the values
of A and B are R and d°R

4t°
R can be found in the American Ephemeris.  Topocentric

parallax corrections may have to be applled to this
value of R.

28 1
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For short intervals of time the relation

2

Q
fou)]

is sufficiently accurate.

%
:ULA s/

With this information, A and B in Equation (5)

can be found. Then some iteration method can be applied

to Equations (5) and (6) until () and r converge. A
possible starting point might be to set f)= A and solve
for r in (6). This value of r gives a new value for

(O from (5), etc.

Once Po is found, r_ 1s known.

(0]
Equation (2) gives the value for ar, - Go
at
%r is found in the American Ephemeris.

(Numerical example of this method found in Herget, p.
23 and p. 44),

Eo and Go,are the constants of integration needed
to determine the orblt. If necessary, the elements of

the orbit can be found from these. (Herget, p. 47)

B. Some Difficulties Which May Be Encountered.
1. Extraneous Solutions.
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Figure 2.

The dotted curve represents the graph of Equation
(5); the solid curve, that of Equation (6).

P1 is the fictitious solution rg < 0.

PE is the position of the observer, which 1s also

-

a solution to the equations.

e

P, is the real solution.

3

A A
2. The solutions made for F)O" and po" are
distorted by truncating the Taylor seriles (7) after the
second order.

3, Zero Divisors and Small Divisors (Herget, pp. 38f)

In equation (4), we are dividing by the quantity

289
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A 3 25

_ (0 X %{;S - 4 . If this quantity 1s zero or

nearly zero, we d tnot have a determinant equation.

The derivative Qf a unlt vector is always perpen-
dicular to the unit vector. Therefore

d A
at al P
40
If 1s directed toward the observer, then
dt
A A 25
F> gt g—g . If the three observations lie

in a plane containing the earth, then/g is moving along
a great circle on the celestial sphere. This situation
ihplies that __gL_ does not have a component out of
A 425

the plane determined by /3 and -—g Again p -ﬁ? H?E

If r varies in such a way that at one time lrk>hl
then the path of the
object on the sky will show an inflection point as the
sun "moves" from the convex to the concave side of the
path. At this inflection point, there 1is no solutlon to
the equations.

If the path of the object exhibits relatively slow
curvature, that 1s, if the deviation of the path from a
great circle is small, then

ﬁx

25

2
’ Q_g’ 1s very small, proportional to the
dt
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area of the spherical triangle joining the points of the
three observations. Dividing by a small quantity will
inject serlous errors into the solution.

One could apply L'Hspital's Rule from the Differential
Calculus to Equation (4), but practically speaking this
is not usually done.

If the three observations lle on a great circle, then
the three observations are not linearly independent.
One might use these observations to determine an orbit
needing only failr arbitrary constants.

The difficulty of slow curvature may be avoided
by allcwing a longer time interval between observations.
However, as At increases, the rapid convergence of the
Taylor series (7) becomes challenged.

C. Another Approach to the Problem.

Consider the following equation expressing r as a

vector sum of ©_ and o =7_.
O ——— o
dt
(8) ry =f,. T, +egy Yy
(8a) o, Py =R, =1, (e 8 -R) +g, ¥ [ Using Eq. (1)]
P1 Py 1 1 Polo o) &1 Vo .

The following set of mutually orthogonal vectors are
avallable from the observations.

jud 281
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/N
O = (coscg Ccos o« , cosgsinot., sin § )
A
A= (-sinx, cOS L , 0 )
ﬁ = ( -SimdfCOS¢L, - sind sinx, + cosof)

A
If we dot Equation (8a) first by &, and then by D, and

re-arrange terms, we get the following two equations.

N A . - D ° N o . A
(9) £y Eﬁo . Aj] O t 8 Ay "V, =1, E{O Ai] -Ezi A1]
~ . A A Ly — o) . A ~ 15 .
(20 £, [p, A:J 0o +&y By ¥, =1, [R, D] 7, Di]

Each of these two equations contains four unknowns, o and

Vo, - If we have two observations, (9) and (10) give us

four equations in four unknowns.

=1-(42§)2 13+M N

r
o) o] (o}
gi=At[il“%%- l—'3' +.59J

r
0O

fi and g4 are obtained from the Taylor expansion of r about

o)
= d —o _ o - f'o
ek (-3), L, e o
o) o) o
29 2

Res
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A possible method of solving for these quantities
1s to guess an rys &lving an initial fi and 8y - Sub-
stitution of these values into equations (9) and (10)
yield first approximations top, and 50. From (1),
(00 implies r . These values of r, and v, (vo= r,)

can be used to find better approximations to f, and gy -

i
There is a distinction to be made between the

method described in Section A and that in Section C.

In (A), the dynamical conditions of the problem were

exactly satisfied | Equation (3)] , while the geometrical

conditions employing the observations were only approxi-

mately satisfied in the Taylor series (7) for,a.

In the second approach, fi and &y which represent
the dynamical conditions, are approxlmated, while the
geometry at the observations is exactly represented
in (9) and (10),

D. Method of Solution When O andf‘o Are Known.

With the use of radar, it is now possible to
determine fDas well as ﬁ . As an 1llustration of the
method used to determine fo and Go from the complete
vector @O, we whall consider observations made by the

Bermuda radar equipment used in the Mercury Project.

There 1s a 20 second interval after the second
stage of the Atlas releases the capsule when it must be
decided whether or not the capsule can continue in the
orbit it now has. Observations are made every 0.1

293
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second during this interval, gilving a total of 200
observations. The epoch of time, to, is taken to be the

half-way point of the total 20 second interval.

The equation used to relate observations to unknowns

is
2 3 _ _
(11) 1_&% +.§A£%_ ro.vo rq
2 Ty 2 Ty

2 3
+AtE—6t + AL (fo'voﬂvfﬁ“
r
(o]

ﬁe is the vector from the center of the Earth to the
observer. F3is the vector from the observer to the

capsule (the observed quantity).

The local coordinate system of the observer is
changing slowly durlng this interval of time. Since
P is measured relative to the local coordilnate system,
corrections are made to reduce each measurement of eleva-
tion, azimuth, and range to one frame of reference.

Tt is assumed that during this interval fo ’ Vo = 0.

© , s known and therefore r, 1s known. This allows
us to determine the coefficients of T and Vg

With 200 observations, we have 600 equations, 200
equations for each of the components of Eo and v, .

L5 294
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The form of the equations 1is:

A x, +Bx, =R + i=1,2,3
1 1 =R * Cxa =

X =Yy

X§=Z

This allows us to solve for fo and GO and thus
determine the orbit.

II. The Gausslan Method of Orbit Determination.
A. OQutline of the Method.

An important difference between the method of
Gauss and that of Laplace (section I.A) has to do with

what force function one assumes. In the method of
Laplace, where substitution for o_
d
dt2
is needeq, one could substitute -
- + F ,
3
T
where F i1s any function called for by the problem. The
Gaussian method assumes elliptic motion, F = 0O

Figure 3.

VT 298
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Since elliptic motion takes place in a plane, we
can say

(12)

If cq + c3

52 would be on the chord joining fl to 53. Since the

= 1,0, the position of the object at

path 1s curved, ¢y + c3j)l.0.

Using equations (1) and (12) we can write
1 A N A _ - -
(13) ¢3 P10y - PoPpy +e3P3P3 =cy Ry - Ry + ¢y Ry

If we dot equation (13) first by (()2 ﬁ)3) and
then by (()l X ﬁ)z we obtain the followling two expressions

(14) 01[731 "Pe xﬁ?;l P1 =2 [ﬁl P x @3]‘
E_‘z° fo\exf%j +°3\:R3° @2"(%;1
(15) c3l}33 : (’51 xﬁ)g] P3 = ¢y [:ﬁl : 61 X (32:] -
[ﬁz -0y = ﬁa;\ +"3‘[?{3 Py /(32]
1f B," By % i3 = O, which implies B3 @) x fp =0,
then we experience the same indeterminacy found in the

Laplaclan method.

Assuming the equations are not indeterminate, proceed
by operating on equation (12). Cross equation (12) by

248
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A A
and dot by R. R 1s the unit vector perpendicular to

r
3
the plane of the orbit.
This gives
T P, R in ©
(16) o - 2173 _Tpr3ein O3 [rp 7]
1 fl x 53 - K ry r3 sin 913 [rl,r3]

Equation (16) will serve as the definition of [ 1,rJ]
which is in effect the area of the triangle between

r, and rJ (See Figure 3.)

Then, 1if we define (ri,rj) as the area of the sector
of the ellipse between ri and rJ , we can establish a

new quantity nij

n _ area of sector =(ri’rJ)
iJ area of triangle E?i,ri]

From (16), we can therefore write
Mz (rpr3)
- (F T3] T2

From Kepler's Law of Areas for elliptic motion,
which states that the radius vector sweeps out equal
areas in equal intervals of time, we can also say

(ra’r3) <t3 - tz)
(rl,r3$ = !t3 - tli

Therefore,
(t3 - t2) W13

(17) ¢ = (£3 - tl) n23

WY
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Similarly

(t, = t;)
(18) 2 1 Y-}13

03 - (t3 "Tl) )712

Clearly, if we can find the ‘s, we will know c
and ¢y. From equations (14) and (15) we can getJﬂl
and./Cbe These give 52. We can then find 52 from some
formula such as equation (8) in section (I.C.) and therefore
we have calculated the orbit,

1

B. The Development of the'Y}“s°

Let us define the quantitles f and g by the following.
(Herget, beginning at p. 54)

2g = EJ

2f = Vj"vi v 1s the true anomaly

“Ei E is the eccentric anomaly

From the formulas for elliptic motion,

(19) rg t Ty = 2a - ae (cos Ej+cos Ei)
= 2a sin2g + 2’1/r'ir"j cos f cos g.
(20) k(t, - t;)
375 = 2g - e(sin E'j - sin Ei) {kepler's Equatioﬁ]

a
2 1r T
=2g - sin 2g + ———Edel cos f cos g

Now define the quantities {{, m, and 1 by

H

2 _

I
n
P
H
R
+
H
3
C
~—

i}
=
L]
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(21) n® = [k(t‘j/r? ;i) I

PR S

or Xf

(22) L - ry + ry - }{
2

Consider a quantity
X = sin2 (% g)

From equation (19)

_ &f (L + x)
2

sin"g

a

and from (20) and (21)

k(t, - ¢

- 1
; ;) = (2g - sin 2g)a3/2 + (2'\/1'11"J cos f sin g a?

This implies

(2g - sin 2g) (L + x)3/2 + (L + x)% = +m

sin3g

From this last formula, we have

2
(23) 1 +x = B

'QQ

and therefore
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(24) q

2
1+ _ﬂﬁ. X (x)

Xg - 8in 2g

where X(x)

sin3g
Expanding X(x)
8g3
2g - (2g - + ...)
X(X) - 5 —%—
(g - -%— + .”)3
3
_ 8¢~ .o
g3 + ...

tells us that the constant term in the expansion of X(x)

is 4/3.

From the definition of x,

%g = % sin g.

Differentiating X(x)
sin3g %§,+ 3 sinzg cos g X =2 - 2cos. 2g = 4 sinzg,
we get

dX _ 4 - 3 cos g X

dg sin g

If we write the following

axX _ d

dg _ 8 -6cos gX _ 4 -3(1-2x) X
dax ax

sin2g 2x (1-x) s

jo¥
&1

20.0
#as
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we obtain
(25) (2x - 2x°) & =4 -3(10 -2x)x

Assume X can be expanded in a series of the form

O
X{x) = j[: A x"
n =20 n
Then,
[aSeY
ax _ E: n-1
-d?-n-:lnAnX

Substituting these forms into equation (25) and equating
coefficients of powers of x" , we obtain the following
recurrence relation.

A, = 4/3 ,from a previous argument.

Therefore,

88 2y

Wi

(26) X(x) + X +

I
W&
Wi+
uiloy

Recall that

sing(%g), where 2g ==EJ - Ey

Therefore, %-g = %-[l E. If Z&E is small, x 1s also
small and the convergence of X(x) is rapid.

The equatiors (23) and (24) can be solved for M in an
iterative manner. A possible starting point 1is to set
Y| = 1.0. Then find m® and L from (21) and (22). Equation (23)
gives x which in turn gives a new value of'q’from (24).

PRI
.Is,‘g.l‘ ..

3981
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The following is an outline of a FORTRAN program
to compute X(x).

Initialize X = 4.0/3.0
P.T. = 4.0/3.0 P.T. = previous term
EN = 4.0 EN = numerator
D =3.0 D = demoninator
> EN = EN + 2.0

D= D+ 2.0
P.T. = P.T. ¥ (EN/D) * x
X + P.T.

P
I

Test P.T. against a tolerance.

When X is carried as far as necessary, one can go on to
compute a new value of Y? . This continues until
convergence of equations (23) and (24), using (21) and
(22).

C. Determining the Orbit

Assume now that n observations have been made.

The method followed here is a new version of the varlation

of geocentric distances.4/91 and//?n are guessed and then
allowed to change.

A
Look at equation (13), modified to 1etj@i/01 stand
for any of the middle observations.

A
©y fAfa -ﬁiﬁi +°n/)nﬁ/\n =cy Ry - Ry + Ry

oo |
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We wish to consider the effect of small changes[%ﬁﬁ,

and,AUO on this equation, Including these effects,
and dotting the equation by Ai’ we obtain

( a/ﬁ B+ th %9>Qp1+ﬁfﬁ)L%. }
+<cn +% A/Dl +%2-3>(\/0n +00,) [An ' fxi}

Collecting terms:

aC A N ac A .

(27) {(cl +§p-% /01> EOI © Ay +5/—0-’-l‘- Pnl Pu ?‘J
aec - A aJe -_ A

gl -3 s i) o,

-y Ibl 'ﬁ}'cnﬁn&% 'él

Terms of order A 2 are neglected.,
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A A
A second equation is obtained by replacing Ai by D1
in (27).

The method 1s described for use on a computer.
List each observation with its corresponding Julian
date and R vector. (R may need to be corrected for
topocentric parallax). Read in the last observation
first and the first observation second. Then guess a
value for (°, and(® . Also guess an initial value of

With this 0, and (@, the machine computes 71n,
cq and Cp e
A
The remaining(oi are now read in one at a time, with
all of the bracketed terms in equation (27) being evaluated
each time, The partials of c¢ are evaluated by considering

P1 T A and P, T A . P+ ylelds two slightly

different values of c, and ¢  from those given by (O

n

Call these values C142 Cq_s Cpyo and Ch-
Then
°14 " %1. _ 9%
2 /\ P21
°h+ ~ %n- _ EJCn
T A T 9P,

~o
N0
~ i
L 2

S eEe BEE S BER BER MER NEE BN WR B BN S B BN BN O Bm = b
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Similarly, 63n +/\ will give different values of c

1
and cn

14+ T S _9°

2A oPn
°n+ ~ ®n- _ d ¢y
A 9Py,

Wlth these partlalswe have two equations of the form

A (SR 5 A =“
A, AR BAi Pn (Ai

< p; AR +ﬁni A[On D

in two unknowns AR, and Afon. If there are n observations
there are n - 2 palrs of such equations. A least
squares solution will give results provided

|2 Ba
|AD /ﬁD

If this value of the determinant 1s read out along with
the values of AL, andzﬁﬁh, then the value of the
solution can be judged. If they are good, then continue
to compute the final orbit with these final values of

O o

@ 1 and ﬁn, If they are not good, continue the above process.

3bs
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In this solution, you are assuming that the guessed
values of‘Pl and (0n are giving you ?Ee correct orbit.
This orbit will determine for you a Api based only on the
values of @l and © o+ The observed @i, used in the form
of ﬁi and ﬁi measure the error you are makihg in assuming

(P, and Pn are correct.

Once you are satisfied with a ﬁl and én’ you can
compute En’ El, Eo (where t = t_ 1s some epoch you have

chosen).

The following equations can be used to compute

0"
ry =Ty Yo t 8y Y
'L = fl To + gl Yo
Therefore
- r,o- o+ (f1 - fn) T,
o
&, - 8
k(t. - t_)
where g, = 1 o ; g = k(tn i to)
n
7210 ?on
2
. =1-2[k(to-tl)]

1 2 2
i 7210 #10

2
. _1-2 [k(t, - t,)]
n 2 2
r
ol o H o
(Herget, p. 57 bottom).
| GO
#4306
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Qrkbit Determination. 23.

Look carefully at the residuals from the solutions
forzﬂf& and A(Onu Those from the first and last obser-
vations will be zero. If a pattern appears in the remalning
residuals, it may be possible to juggle the figures to
get a better fit.

III. Improvement of the Orbit (without perturbations).

There are many methods which can be used to lmprove
the preliminary orbift, which is found by methods discussed
in Sections I and II. After a large number of observations
have accumulated, one is in a position to apply corrections.
The orbit is a conic section and one can apply corrections
either to its elemen®ts (a, e, 1, etc.) or to the initial
position and velocity vectors at some time, to‘ It is also
useful to have formulae which correct an orbit which 1is not

a conlc section;, but is perturbed. These formulae will be

discuased in Section 1V,

A. Corrections from a Small Change in Initial Conditions.

The technique to be used 1s that of undetermined
differential variations (5§§o and é;ﬁo) of the initial
conditions (fo and Vo)o Then at t_ we have

r =7r +5r0

‘o o)

Voo = Vg +é§vo s where cgro and é;vo are
as yet unknown.

From equation (8), r =f T + g Vg,

we can write the first variational equatilon,

wer 361
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(28) 8t = 187, + &7, +8r 7, +Sg T,
This can also be express%d in matrix form,
. S5 o[9x2x ox7 T4y
(29) |[&x| = St = 5——9y RIS Jko
sy a:[ éyo
Y 2;0 . | gizo
z o) x!
=, o
Lé;xo . . .3 o_ %yé
1 1 1_625_
The notation to be used is ﬁo = (xo » Yo 0 Zg ).

The plan is to express f and g in terms of variables
in which they are easily differentiated and then change
variables to those ultimately required by the problem.

We shall use the followlng expressions in the
development.

%S(EO ° EO) = f‘O ° él?.O = I'O fgro = xo“gxo + yO 5yo, + ZO 520

58, "9 =5 5(v.0) = x, $x50 + v, &Y,

S(F, " 9,) = S(by) =x Sx, +y,8y, +z,52,

;308
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Orbit Determination. 25.
LetAE =E - E_
Then, let

F =a(l - cosd E)

and
3 ="Vasin AE
Therefore
§r=E ga+Va od /e
§6 =35 082 +Va cosAESAE

The quantity £, may be writften

f=1-§,—'
O
St =E5 &r -I— Sa- T2 cOAE
r (o] o]
O

To find éa, consider the energy integral (the
unit of time being chosen such that & = 1.0).

-

r
o

To eliminate éAE, we use two separate expressions

$
_QS_%, = %% +<§(v02)

for g.

ty
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g = k(t - t,) - a/? [AE - sin AE]

k(t - -g(Sa)
&:_%[( ") - a>J_ﬁF§AE
g =G ro + F DO
r G
5g=06r0+F6D0+ {—%— + D F}ég-

+ {ro\/; cos AE + D N a G} SAE
Therefore,

\/ - G al. Sa F
-Va éAE = -I: gr + -—é- ;-g + —i’- SDO P

o}

where
_ 3k(t—to) -g -G ro
r

L

The previous development is based on the presentation of

Bower.

We now have expressilons for &f and Sg in terms of
Ty V,, T and 550, 5\700 The complete expressions are
found in Herget, pp. T4 ff. (See equations ( (6, 6)) and

((6, 10)) and recall that these are written in Cracovians).

The equation to be solved for the unknowns ééfo,
é;GO 1s ((6, 8)) (Herget, p. 75). It shall be derived
now. In what follows, all quantities are assumed to be

in the equatorial system.

31¢
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[Z A

§

|

|

l

I

l N

/ 7 77
e | /
pserver | /

|

I
|

/

/Plane of Eczuah’r
/

ah Figure 4.

Fromyf'-fﬁ - R , we get

{30) _éx‘\ St =5(6 = T I 1 pcoscfAA
Sy 7\ D
SZ_] l l

(Herget, p. 73, Equation ((6,3)) ).

Ao(, AS, and A/O are observed minus computed
(O - ¢) residuals.

If we pre-multip]y equation (30) first by A then
D and then [0, we obtain the following.

A " S7 —pcoséAa‘- (0 - ¢)
(31) D65 =pAS (0 - ¢)
Pr&r=Ap (0 - ¢)

AP YE
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Such residuals exist for each observation. We wish
to correct the orbit in such a way that A (0 - c) are
made as small, nearly zero, as possible.

From (30) (Sf- =5‘6 ='§ (observed) - (6 (computed).
By definition, it is true that

A
A fa\ (observed) = 0 =D ° fo\(observed)°

Therefore /A St = A 6(5 =1 [Jﬁ (observed) - ;0 (computed)]

A, =
=-12 P (computed)

A [f’ (computed) + ﬁ]

We can therefore rewrite (31) as

-8 r+R) _ cos S A £ (0 - ¢)
(°
(32)
D (B4R - AL (0 - o)

&

The third relation 1s not used since 1n most cases ° is
not observed directly. Equations (32) allow us to compute
the residuals for each observation. To tie these results
to our expressions for 650 and 6\70, recall that (31)
can be wriltten in matrix form:

1 — Z| = [ cosbSAL
SR e L b voy

. e,

GE TS E T -E @ I E gy



F /
—‘ ‘-

Orbit Destermination. 29.
Substituting for Sr, from (29) we obtain one method
for computing the variations.
A —
(34) :—L <—3‘—) aX ax‘j SXO
a P €—~§—% aXo° c azo” 5yo
L | L o . e e o = cos SA*
?}SZE -1 bz A5
| 7o 924

This is equation ({6,8)) as it appears in Herget, p. 75.

{(In the bock it is written in Cracovians.)

B. Method of Solving System {34).

With several observations available, we have
enough infeormation to perform a least squares solution
to system {34).

Each equation will be of the form
(35) a xq + b ¥, + ¢ X3 +dx, +e Xg +f xg=um

1
where X; = 6xo, s Xg = 620

The follcowing elimination method 1s suggested for

computational work. The solutlons and probable error

are found in one process.

From {35), set up the normal equations

Ea] rpr Bl oxp v+l xg = [od
J - -

T = Pnﬂ

+[i] g - [64]

313
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When the computation 1s complete, we would have two
matrices A and B which appear as follows.

o} d o o o ol | 2 0 0 0 0
[ba} [q . : o 1 . .
“da} [ ] [dd . 8 1 : .
o et
o I T o} L L
63| [ag 2 [ad [ad ,af] P8 Ay By €1 Dy Ey
S 1 o5 il o | IR
[dds‘]kdeﬂ dfs] : D), E
eeﬂ E5
Lffﬂ [f’mS:‘
(a) (B)

On the computer one starts with the upper half of
A {the normal equations) and with the upper half of B
(the identity matrix). If we multiply every column of
A by cclumn 1 of B we obtain Row 7 of A. Then, dividing
every member of row 7 in A by [aé] » We obtaln row 7 in

B.
For example, A, = lﬁ%— B, = lééL- ete
it Pa e | [gﬂ ? )

We now multiply every column in A by column 2 of B.
This gives row 8 of A.

For example, %bb% ={ } 1l o+ [aIJ A+ 0]
bell =|bel " 1 + [?ﬂ A} + 0

.

, .
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Dividing row 8 of A by [bbl] we obtain row 8 of B.

_ Lbel
B2 = 551 , etc.,

This process continues until the whole of matrices
A and B are computed,

The lower half of A gives the solutions for X
Xgs starting with

s - 1

l’ e e 9

We then compute the quantities,

A2 = Bl - Al B2

A3 = Cl - Al 02 - A2 C3

A4 = Dl - Al D2 - A2 D3 - A3 D4

A5 = E1 - Al E2 - A2 E3 - A3 E4 - A4 E5
B3 = 02 - B2 03

B = E2 - B2 E3 - B3 E4 - B4 E5
04 = D3 - 03 D4

<¥345
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From these we obtain,

e Ty
Qs ‘“[Eéﬂz'j TEES]
1 'qu DS2
Uy T3 M = T3]
- -2 2 2
c C C
Q3 = Lo PG S
Fc% Fd3 ee 5
B2 B B, © B2
1 2 3 M 5
Qo _"Fﬂ * oo t [dd:;] t et TETS
’ o : - 2 2
Qi = raia * bﬁ% + 252 t+ 323 + :2 + ?’?
SR S | == 7]

The probable zrrors of unit weight for each measurement
are given by

] a
(36) p.e. X, = 0.6745 TV/ ——

n

{v@ = the sum of the squares of the residuals.
The residuals are obtained by substituting the final
; 1into the equations of condition (35).
Each residual 1s therefore found by

valueg of x

6
my - 2 oy Xy (oci = coefficlent of Xi)'

. n 6 o
and [vvi= Y (m - ) A; *4)° where theXj may

: Jj=1 i=1 be different for

each J.

n = the number of equatlons of condition available.
k = the number of unknowns,in this case, k = 6.

316
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If n = 6, the probable error will show it. This is

the case where 3 observations are used in System (33)
to correct an orbit.

It Qii.Q:I, then the observations are favorable.
If there 1s a large correlation between unknowns through
the coefficients, Qii will be larger. This 1s the case
when the system is physically ill-conditioned.

One more note on the computation 1s made in the
conslideration of computer space.

The lower halves of matrices A and B can
be condensed in the followlng manner.

[aa] [ab] [a c] [ad] [ae] [afi‘ : [arrl
1 Eob]] bel [bd

Bj,A, B, [ccg {cd’r_’ : o
C1.A; CgBy €y a3

D).Ay DpBy DgCy Dy [eet] . ,
Ey,Ag EpBg EjuC EyDs  Eg [org o [mms|

where, for example, A2 can replace Bl as soon as it 1s
computed. The 1dentity matrlix need not be stored at all,

C. Correctlons to Orbits Determined by Radar

(This outline illustrates the principle involved
when the observations are not weighted equally.)

Since we have established equations (29) with respect
to an equatorial system, we need to refer to another

317
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system, that of the observer. In this system z is directed
toward the local zenith, x toward the East point on the
horizon, and y toward the North point.

The equation corresponding to (33) becomes

(37) —(%—[A \:A] 65] = (COS%ZA) (0 - ¢)
AH

where
A = (Ocos H sin A (Ocos H cos A (Osin H
cos A - 8in A 0
- 8in H sin A - 81n H cos A cos H

N\= - sinA cos A 0
- sinQcos A - sincbsin A cost

cos(pcos/k coscpsin A_ sian

jxrepresents a rotation matrix taking us from the system

of the equator to that of the observer. 1s the astronom-
ical latitude and /k
the observer.

, the astronomical longitude, ©of

Note that in this set of equations, ZX(D is included
among the residuals, sincefo is a basic measured quantity
alcng with A , the azimuth angle and H, the elevation.

The solution will proceed as before. The epoch of

time 1s usually taken to be that time at which the satellite
is at a minimum distance from the station.

) 318
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Orbit Determination. 35.

Involved in the solution is a quantity called the
welghting factor., Radar equipment can measure distances
better than angles, especially when the obJject 1is near
the zenith.

f
Suppose the r.m.s. error, € , of distance measurement
fo be about 100 feet. 8Scaled to the radius of the earth,
u, we obtain

8

£ — €~ 100 ft.
u H000 mi.

Let(i)be the error of the angular measurements.
The linear effect is thenp(l)° We are obliged to
introduce a welghting factor into the equations

If all equations in (37) involving angular measurements
are multiplied by this value, then we have given unit
weight to the distance measurements and we can expect
the errors 1n each component of the equations to be
approximately equal. As A and H are given less and less
welght, their probable errors decrease.

IV. Orbit Correction with Perturbations
A. Form of the Equations

In this section, we consider deviations from
motion 1n a conic section. Many of the previous methods
can be applied, where the equations of two body motion

319



Orbit Determination. 36.

are replaced by

2 - -
—TT"“

o

=F (¥, 7, ¢, £) .

In planetary motions, T is absent from F , but in
artificial satellite motion with drag (for example),
r is present. The quantity C 1s a constant parameter
of the problem, a small quantity.

Let Xy =X, ¥V, 2 , where 1 = 1,2,3.

Then, consider the partials of ii with respect to any
quantity, q, which 1s not a function of time. Then,

Iy Y(2F 2% oF; d%; 9F ¢
aq ACETCE! ajcjaq JdC 24qa

*
Il
e

The variation of the Fi’ i=1,2,3, with respect
to the quantity C 1s included for purposes of determining
an improved value of C 1n correction. Then, we associate

with q the quantities

X. = XO, yo, Zo J = 1,2,3

- t i t
Ve = Xg 5 Yo s 2 k=1,2,3

the initial conditions.
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Define
w = axi 3 W = g—— a.—x__
ij a XJ 1] dat QXJ
and
Wik T o 1 s WL = g_(?_.x_i)
’ 1k dt
8vk IV,

37.

These w's express the partial differential coefficients

of the variation of r with the initial conditions. At

this time one could note the similarity of this developmeht
with that in Section III,A. Now equation (28) has added

to 1t a quantity S(§§ R dtdt).

From the w's, we can write

. 42 axi _ Z—)ifi
"1 ? é)xJ &xj

d
38
(38) IF IF
Z 1 1 + ‘i W
n éxn nJ Exn iJ
R _ E)'i
wik - avk
JF OF
= E: 1 W + 1 w
n an nk ) Xn nk

The order of differentiation can be changed in (38)
since X, 1s independent of time.
(38) since X; 1s independent of C.

C does not appear in
We can, however,

324



Orbit Determination. 38.

establish the following equatién contalning C.
2 axi axi

. ’" _ d 1
(539) wiC —E? dec ac
n X ne n nc e

Equations (38) and (39) can be numerically integrated to
give wij’ Wiger and Wige The initial conditions are:

for w, . PoWyy = 1.0 , wij = 0,0 for i+ j
Won = 1.0 '
W33 - 100 wij = Ooo
for LI Wi, = 1.0 wik = 0.0
Wos = 1,
Wy = 1.0 Wiy = 0.0 for 1 #k
for Wi w1C = 0.0
Wio = 0.0

We have now established a method for computing
AT , in a form similar to (29). We have

B DX ] B W
- 1
(40) Sr = : : = 5x
wij o Wy o axz
(3x3) * (3x3) © Do ov
. ox
2] s
! ° i L
322
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After one has computed a perturbed orbit, one can
put the expression (40) for T into equation (33) and
apply corrections to a perturbed orbit. If one does
not wish to include a correction for c¢, this part is
easily eliminated from the equation.

B. The Satellites of Juplter

The equations of motion for a satellite, with
Jupiter as origin, can be wrltten as

2 = - r -r r
2 r 2 o) 0]

(41) —Td L=_-myk® &, + M k| "mg— -
dt 4 r3 e [§3® ry

o) r

+ mh k

mass of Jupilter

=i
%r,
{
Ry

’h

=
i=

mass of Saturn

oo

mass of Sun

= ¥

o)

r radius vector from Jupiter to the Satellite
FQ ¢ radius vector from Jupiter to the Sun

r radius vector from Jupiter to Saturn

bfa*

oe oo

distance from Sun to Satellite
distance from Saturn to Satelllte

©)

To determine the orbit, we first make use of this
device of Encke. The bracketed terms in (41) are differences
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of very nearly equal quantities. To avoid this problem,

Define q by the relation

2 = = 2
Ao ro - r -r /2
——l:g—— =1 - 2q® =1 - 2 2
(C] r ©

Define;, f, by

fg =1 - {1 - 2q)—3/2

Therefore,
. 2
ra-3a(1+3a +2° % @ v

It follows that

r\3
— - ‘3/2 = - °
(\A_:—) = (1 2a4 ) 1 (fq)1i

Then {41) can be written

2
2 - = k _ _
(42) 91;5 = - my K i-_,; - ;‘2?- [(fq)e £, +[1 - (fq)o]r}
1% 2 )

_ m’zk3 {(iﬁ - F) (ra) + f}
i
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The units of the astronomical unit, mass of the sun, and
ephemeris time can be used.

Many methods of numerical integration can be applied
to calculate this orbit. <Cowell's method directly integrates
the coordinates. Encke's method finds the quantlty §'i,
where

Xy Xy (ellipse) + £;.
After numerical integration, one can combine equation
(40) with the residuals into the form of (33) for purposes

of orbit improvement.

With F = (Fl,Fz,F3) taken as the right hand side of
equation (41), we get the following expressions for some
of the partials used in the calculations of Wik and wij'

2 2 2
OF k 2 M_k (x - x)
1 __m1.1.3 [_ 1+3x—§} + _@._3. {_14-3.__@__2__1\
% r Ao A

r

. mﬁ k2 [. 143 (Xﬁ - x)e}
-3 - —
by 4

2 2
JF)  myk [o+§’%—} , Mok [O+3(XO-X)(ye-Y)]

QY 3 r A@E Aoz
m k2
+ .Jigsg [similar expression}

etc.,

[ 13
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Ncte that
gFi_aFi _aFi
T T - T
I x Ay Dz

since the velocity does not appear in the equations.

= 0

It 1s sometimes convenient to use

=) dF,
my, ?FEZ instead of 5 o . In this case,
&my

5m4 is obtalned as a ratio
my
V. Orbit Correction Using Elliptic Elements.
A. Rectangular Ccordinates

It is possible to obtain a set of orbital elements
from the initial position and velocity vectors.

/N
k2

Figure 5.
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A set of elements might be

a: seml maJjor axis

e: eccentricity

i: 1inclination

W/ argument of perihelion

SZ: longitude of ascending node
Mo: mean anomaly at epoch time, to

As before, the effects of unknown differential

variations of the initial conditions are considered.
These variations will be represented by

SM,, Se, Sasa, 81, SU, §5)

__ Replace <51, é;LJ,(5$2 by the rotation vector
= \
SW¥= (& ‘Ux’éwy’ 6\“2 ) where each component
represents a rotation about its corresponding axis
(x,y, or z). Based on the method of Eckert and
Brouwer, the work 1s done out in full in Herget, pp. 82 f.

From considerations developed in the text, 1t is found
that

St cS{px r + g- é;M
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H and K are functions of e and E, the eccentric anomaly.

-3/2

=

It

&
Mojw

k (t - to) a

pris coefficient of&a, coming from the variation of the
mean motion with é;ay increases with time. Therefore
é;a ige better determined as flme goes on.

6@3{ T =/}L(Wyz n\‘yzy) + 3(sz”\yx z) +ﬁ(\yxy -Wy x)

Tris leads to the following expression ford T (Herget, p.83).

-
(43) 6% =\‘O z -y x /n H +K x /n x+mxﬂ/nj sY
-z O x y'/n Hy +Ky'/n y+tmy'/n é;H;

Ly =X 0] z'/n HZ +k z'/n zmz'/n 64%
_ é;mo

Se
osn

As before, this expresslon 1s substituted into equation
{33) and a least squares sclution gives values for the

sariaticn of the elements.

One difficulty with thls development arises in the
ase of a nearly circular orbit in the x,y plane. In
nhis case, z! = 0 and r' 1s very nearly perpendicular
to r., This impliles

ot Q

X't =y

yP X+ x
The third and fourth rows of the matrix in (43) are
proportional and the equations are indeterminant. This
necessitates a different formulation.
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B. Rectangular Coordinates of the Orbit.

The vectors % and 6 lie in the orbit plane,
9 directed toward perihelion. ﬁ is perpendicular to the
orbital plane. The three vectors form a mutually orthogonal,
right handed system of vectors.

Then, choose the following set of variational elements,

x] = 5mo+<§s
Xy = é;p

X3 = Sq

Xy = ebs

Xg = Se

Xg = $a/a

A A
where 6 s 1s a rotation about R, 5p about P, and Sq
about‘a.

o= A b s
éS‘V'= x2P + x36 + —g-ﬁ .

Symbolically, denote &F by

(4)4) r = [CiJ] _Xl— i=1,2,3
Xp J=1,...,6
%

A
It is necessary to define another set of axes, r,

A

R, and 2 in order to calculate the °ij°
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A —
A r 1s a time dependent vector directed along r.
R is again the vector perpendicular to the orbital plane.

A 2 ot
_Rxr
u - r [}
Therefore,
- A N 2'
T =P a(cosE - e) +Q b sin E , b =adl-e
- -1 A A
v_r _ ~-PasinE + QDb coskE
n n 1l - e cosE
A A
ﬁ Q (cosE - e) - P~/l-e2 sin E
1l - e cosE
A,V _ ea
r o =T sin E

Using methods simlilar to those 1in sectlon A, we can find
[e14] -
W= e A _ =
éBfo r r = 0, Therefore, Cip = c13 0 and the

contribution of this term to 014 is zero.

1 - ., AN _ T _ -
<Sq/x r u= gx . Therefore, Cop = 023 = 0

o

and the contribution of this term to 024 is

T - A
5\er"‘R=bsinEx2 —a(cosE-e)x3.

Therefore;, C3p = b sin E, a3 = -a(cosE -e) , cay = 0.

Similar work ultimately ylelds the followlng set of
expressions:
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Orbit Determination. 47,
2
-a
c = =—— 8inE
14 r
€11 T "€ Cyy
= ‘ ¥
015 Hr + K c11 .
Cig =T + m Cq1 H, k, and m are the same
2 as 1in Section V, A
c = a l-e”= r-ec
21 — 24
r
r a2 2
o “[E" o7 l - e The e in the denomlnator
can be removed with some
algebraic manipulation.
025 K 021
Cog = M Coy
31 = ¢35 = ¢36 = O
Upon substitution of this matrix into (33) one
gets — _ 7 -1 10 1T 7
6—[0—‘) xl
1 A . AR
P —A— R F c . =lcos & A K
A 1j )
«D— x A
6
AN IR E N R R | .
[F] =fcos f =-sinf O s [ = true anomaly
sin f cos f 0
0 0 1
[R] =[P Qx Rx ’ [h]is derived completely in terms
X of known angles in Herget, pp. 49 f.
PYQ‘.YRY
Pz Q'z Rz

AT .33 i
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A A
[R] ° [F] serve to rotate coordinates from r, {\1, R

to an equatorial frame of reference.

One eliminates A0 from the equations by ignoring o
in the first matrix.

When the solution is complete, 5i, 5w, and SQ
are found by

S1

COs <Oy 5p - 8in . 6q

écﬂa sin coocgp + cos w, 5

q

sin 1
Sco = §s - cost &8

When 1 1s small, Sﬁis poorly determined.
When e is small, & s is poorly determined.

C. Special Elements for Small e and 1.

Trouble with small eccentriclty can be avoided
by choosing axes not related to perihelion.

R

2>

X0 o
N i
0
Figure 6.

2 7 _ADR
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Orbit Determination. S 49,

The point D.P. (departure point) and its assoclated
vector '@ lle in the orbit plane and deflne an origin
of angles. @ is restricted to motion perpendicular . .. ...
to the plane of the orbit when 1its variations are calcu-
lated. T is 90 from S in the orbit plane in the direction
of motion. S X T R.

Define
w = angle from D.P. to perihelion
u = f +¢ = angle from D.P, to T .

Corresponding to Kepler's Equation, let

U=M+w) =(E+w) - e sin [(E+w)-w]
= U, + ng (t-t )
=¢- (x sin(t) Ycosd))

X= ewosw, Y = e sinw

dek +w

Then

r COS U COSCb X 4+ Y(X sincb - Y cos(b)

a 1 +\/1 - x° - ¥
r sin u _ sian-Y _X(x sind)—Ycosd?)
a 1 A/1 - x2 _ Y2
with
- A A
r=rcosusS+rsinuflT
e = \[X2 + Y2
FaS A
P = XS + YT
\/ ¥3+y?
& | 333



Orbit Determination, 50.
- A A
= +
§SVY=VYs \VT T

one can again find the components of the [cij] matrix
in 65’*, For example, '

(Sqfxf' —rsinuR (S\VS)- r cos u R (6WT).

implies 031 =r sinu , 032 = - I CcOosS U .

The variational elements areé\v s? 6\{/.1,, Sx, 5Y,

(SUO, 6a/a.
D. Elliptic Elements with Perturbations.

Define

xx7=JEﬁ.

<n
il
H

[>]]

_e 4
Jo

C and § with M are a convenlent set of elements to

use.,

In operator notation, define
d _ 9
at =3t 'fgg'E

where -a— represents the motion of a particle in an

ot

elliptic orbit even if the elements were constant and

é}- represents the variation of allconstants even ir

the motion of the particle were frozen fixed.
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Orbit Determination. 51.

For example,

da _ 3 _ 2a _

2 -32+8-8 3t-0

dr _ Qf , &F _9r _ = r _
(5) E-ELEE-3E-7 5 F-o

Equation (45) says that perturbations cannot instantaneously
perturb the radius vector. They have a future but not
an immediate influence when they start acting.

av _9v , SV _.T =
(46) it A~ A S

v T vV _ =

t— -rj- E] St—F °

Therefore, from (46), it 1s seen that perturbations have
an immediate effect on the velocity vector.

Now look at the orbital elements.

(47) %%=%g=fx%‘é+§%xe=fxﬁ .
AFormula (47) gives the first variation of Jp
and R. If we dot (47) by R,

A C - - -
R 2% =/l§ °‘er=r{1\° F = magnitude of change

in angular momentum.

Dotting (47) by'?'gives

N, be _
r %E-—O o

The interpretation of this equation is that it is never
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Orbit Determination. he.

possible for ¢ to be changed in such a way that it is no
longer perpendicular to *. That 1s, any change 1ln the

orbit plane must occur perpendicular to r and therefore
can be expressed as an instantaneous rotation about the

radius vector.

- _ _ A _
G ° g%-= G xr *"F=-~rR°F

o

From this equation it is obvious that 1f F lies in the
orbit plane, it will not shift the plane at all.

For the variation of G, one writes

(48) 2%=(1+§)F‘-[§—r-f;—il] f-%[ﬁ‘ﬁ'}ﬁ

For purposes of notatilon,

6&__-‘2_1.{/\0_]/\
S.E—K pR F| R o

To find the variation of M, consider first the
variation of a. From the energy integral,

- 8% _ -2 & L, 1_ §a

S t T2 &P :

é%-= 2a® § ° F

and

n_ 3k = .8
%ﬁ'—"ﬁv F °
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Orbit Determination.
Then,
dm=am+5m=n+5mo
atF - 3 t35E 5t
Therefore,
[& o)
M—mo+ —8-—E'dt+f n0+ %—gdt dt =
_ 3k = . =
m, + AM+no(t-to)+IJ - & ¥ ° Fatat
where
Sm 2 A
g=i—-——1'_e P“K-%(E°F‘) :
6 |
If the eccentricity isAsmall, there will be difficulty
in the calculation of Q@ and sm, . (See an article

by Herget, Astronomical 5t

Journal, 57, 1952).

A possible way to avoid this deficiency 1s to go
back to the set of elements defined in Section V, C.

Start with

Su
U =T, +n,(t-t,) +J'g‘;'t£ dt +J’J' gtn dtdt

X
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Orbit Determination. 54,

= A A
Letting @ represent a filnlte rotation about §, T, R

from position at to to the instantaneous position, we

can write
A A ,2 - /\]
U=U +—p Qon+Qx(Qon)
1 +Q
A A
where U represents S and T.
54
dt
| &
and

gg_ S_Tl(r+r)

VI. The Parabolic Orbit.

A. Parameters Defined.

Consider the relation
(49) 2 dv = xVp dt
from which Kepler's equation is derived.

M =E - e sinE.

ps e—>1, M—>E3/e! + ... . The relation is cubic.
This implies the need to redefilne Kepler's equation for

ez 1.0,

For a hyperbola, e> 1.0,
M = v(t-T) = -F + e sinh F. (Herget, p. 34).
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Orbit Determination.

For the parabola, e = 1,0, the following trans-
formation is used. (Herget, p. 32).

seml-latus rectum.

Define @ = p/2 , p
p - 24

1l +ecos f l +cos £

Then r

= q sec? £'= q (1+ tan® %)

where f = true anomaly.

Substitution into equation (49), gives

J%%gﬁ: sec? £/2 (1+tan®f/2) d(if)

Integrating, from T to the variable upper limit, ¢,

gives

Jgéigg%'= tan(if) + %-tan3(%f) .

a

B. Position Determination - Gauss for Nearby Parabolic

Orbit. (Herget, pp. 35 ff).

Defilne

55.

g = L * e , b o= 5(1-e) _/ 5(1+e)
10 1+Qe 1+%e

(50) a =25 (E -8B b san®(w) .

cC tan 3w = tan 3f

..339



Orbit Determination. 56,

k(t-T) _ 1 31
(51) Bajg$€§7% tan iw + 3 tan” 3w

r = q D(1 + tan°£/2)

a D(1-tan®r/2)
a D(2 tan £/2)

(52) r cosf

r sinf

Therefore, B,C, and D can all be wriltten as functions of
A. When A =0, B=C =D =1, Tables of values of B,
C, D for a glven value of A are found in the Appendix
of the text; for elliptic and hyperbolic cases.

One may find the solution by starting with B = 1 in
(51). This gilves w which in turn ylelds a value.for A in
{50). From the tables, this A gives a new value for B, etc.

One can also find other orbital quantitlies from the
relations in (52).

C. Orbit Determination - Lambert (Herget, pp. 65 ff).

Define
2g = Ei - EJ =c¢c - d
2h = ¢ + d

Ei + E
and cosh = e cos -——7?—41—

Then ry + ry = 2a(1l - cosg cosh) = a(2-cosc - cosd) .
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OCrbit Determination. 5T7.

For the vector § = fi - EJ (the chord joining any two
positions in the orbit) we have

2

S° = 4a® (1-cosg cosh)2

- 4a® (cosg-cosh)2

[the minus sign in the second half of the right hand side
is missing in the text ] .

82

(2a sing sinh)2
a2(cosd - cosc)2

try+S =4 s8in2(4c)

Ty

i

(53

+r, -8 =4 sine(%d) .

I'i 3

Kepler's equation gives the dynamical conditions, 1in the
form

k(t, - t,)

———4§7§—i = 2¢ - 2 sing cosh

a (¢ - sinc) - (d - sind) .

Then

6k -t = 3 ¢ - sinc 4 11'12 1 3/2
(by - ty) =7 (sin o) )( a sin®(4c))

sin”(3d)
(54) or 6k(ty -t;) = a(c) [ri+r +s] 3/2 _ q(a) [ri+1~J - s]3/2

- 3 (d—sind ) (ua sine(-’fd))3/2

J

This equation can be expanded (Herget, p. 66) into a series.
Then taking the limit as a—oo, one gets Euler's equation
(first derived by Newton).
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Orbit Determination. 58.
Equations (53) and (54) represent the geometrical
and dynamical conditions of the orbit. Recall the equation

of Gauss's method,

(55) cq @l- @ o + 03(53 = clﬁl - ﬁz + c3ﬁ3 =7 .

Defilne
,(32" \ - 4
l(ae x-'[

A oxp, -4

N AN
Then v F% xu=0 |, (ﬁ32 is taken as the epoch time).

Dot (55) by fog u .
A : A A
Then, clPl(Pl . @zxﬁ) +c:3(33 (ﬁ3 '(32xu) =0

Therefore F% =M (P where

1”01 (Oexu)

3‘?53 Py x @) and 1s perfectly rigorous.

If the c¢'s are known, this determines M. The development
is found in Herget, pp. 67 f.

One 1mportant difficulty 1s overcome when a parabolic
orbit is determined. Since e = 1, there remain only 5
unknowns to be calculated. Therefore, 3 observations,
even 1if they lie on a great circle, are sufficient to
determine the orbit.
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Orbit Determination. 59.
D. Differential Corrections to Parabolic Orbit.
From previous considerations, it is known that

- A\ A
7 =q P(l - tan® £/2) +2q Q tan £/2 .

A
= _29Q - 29 £ tan £/2
J2 ¢/ (1+tan® £/2) :

The elements of the orbit can be specified by

A A
q; T, P, Q where e = 1, Therefore we can
use the following set of differential variations.

¥y SV &Y, k61, 8a/a . Se=0 .

With respect to an equatorial frame of reference, using
equations analagous to those in Section V, we obtain

-~ ; - - -
¢ =10 z -y = x-Zxt1) x| |8Y,
-z 0 +x -y y- % k(t-T) y S\Vy
y -x 0 -z z-3Kk(t-T)z S\Pz
L 2 _ kST
ba/

Bl

The inclusion of éie, letting a parabola go into
an ellipse or hyperbola, 1s discussed in an article
by Paul Herget, Astronomical Journal, 48, 105, (1940).

Fad
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Calculus of Variations. 1.

I. Introduction.

The calculus of variations and optimum control theory,
along with certain assoclated computational methods, will
be presented in parallel format to show the basic simi-
larities in spite of what may superficially seem to be
glaring differences. The two theories together form one
theory, with separate vocabularies arising from usage
current to its era of development.

Consider the fcllowing problem in classical calculus
of variations, the well known bead on the frictionless
wire falling under the influence of gravity or brachisto-
chrone:

Flg. 1

Find the path of least time between points 1 and 2 for a
bead of mass m sliding along the wire under the influence
of gravity alone. The time required for descent is



Calculus of Variations. 2.
T_I%@g_[zds - x2.__}l__“1+'2dy (1.1)
- " = = s .

1’ 1Vagy xl\/2gy

where the last integral 1is written for a curve y=y(x),
x,<x<x,. Restated: Of all arcs joining the points 1
and 2, find the arc for which T=min.

Consider now the modern brachistochrone problem;
that of finding the path of least time between two points
for a rocket under the influence of gravity and a thrust
force with variable direction but with constant magnitude.

b4 F

Fig. 2

An additional constraint is imposed: The slope of the
optimal path is to have fixed values at 1 and 2. This 1s
a problem in optimum control theory. Mathematically for-
mulated in terms of the variables shown in Filg. 2, for a
rocket of mass 1:

Fie . 34




Calculus of Variations. 3.

The differential equations are X = F cos u
y = F sin u-g.
The end conditions are x(0), y(0), x(0), &(O)} fixed
2

X(T): Y(T): i(T): i(T)

(1.2)
and the problem is to make T a minimum.

This control problem is, in fact, the classically
formulated Problem of Mayor. One speaks of the varilables
X,X,¥,¥ as the state variables, and of the function u(t)
as the control variable. We wish to choose u(t) so that
we go from point 1 to point 2 in the least time.

Let us rewrite the last problem in a more convenlent
form. Let

1 2 . b .
X =X, X“=y, x3=x9 X =y. (1.3)
Then the problem 1s: Differential equations

i1=x3, i2=x4, %3=F cos u, k4=F sin u-g, with xi(O) fixed,
xi(T) fixed (i=1,2,3,4); T=min. (1.4)

This type of problem can also be written in the form
of the general Problem of Bolza:

1. fi(tgx,u), (i=1,...,n), a set of differential

or algebraic equations, find among the class of arcs satis-

Given x

fying some end point conditions, say xi(O) fixed, and per-
haps xi(T) on a line or surface 1n xi space, the functlons
xT(t) and the control u(t), O<(t<_T, for which

k.o . 34N



Calculus of Variations. L,

T
g(t) + fof(t,x,u)dt = min. (1.5)

It is to be understood that the symbols x and u represent
vectors with, in the case of x, n components.

Among the topics we could consider regarding are
these problems: v

1. Properties of solutilons,

2. Construction of solutions,

3. Existence of solutions,

4, Sufficiency conditions.
In this serles of lectures we will consider only Topic 1,
which includes complete discussions of the necessary con-
ditions which must be satisfied by solutions of the above-
formulated problems.

II. Minimum of a Function of n Variables.

Before studying the problem of minimizing a functional
such as (1.1), let us consider the problem of minimizing
a function of n variables. As an example, consider

f{x,y) = min.

The first order necessary conditions that must be satisfiled
are

f. =0, f& = 0, where, for example, f = é%%%, ete.; (2.1)

and the second order test 1s

I 3360




Calculus of Variations. 5.

2 2
£+ 2fxyhk+fyyk =0, (2.2)

Of course, these conditlons guarantee only that a point
is a local minimum. Since there is no global test for
the absolute minimum, we usually must find all the points
satisfying (2.1) and (2.2) and then test to ascertain the
absoclute minimum.

In the more general case of a function of n variables,
f(xlgxe,x3,.a.,xn), we write the necessary conditions

analogous to (2.1) and (2.2) as

fi(xo)=0 1 =1, 2, vees N

X (2.3)
i

fxixj(xo)h nd >0  forall n,

which must be satisfied for all points Xq which are minima.
In (2.3), the usual summation convention has been adopted.
(2.3)) can be interpreted as the condition that grad f=0.

To see this, let

b(t) = £(xg + th) = f(xy) = 6(0)

if x, 18 a minimum point. Thus ¢'(0)=0 and ¢"(0)>0
for such a point, a condition that must be true for all h.
Thus 1t follows that

0 = ¢'0) = £1(x,h) = £ ,(x,)n%, (2.4)
X

which is identical to (2.3)1. (2.4) is also sometimes

called the differential of f at xo, the first variation

of £ at xo and the directional derivative of f at X in
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the direction h. (2.3)2 is obtained from the latter con-
dition on O(t),

2
1
0 < ¢" = £"(xy,h) = i'fz' (xo + th)l o = fxixj(xo)h nd,

As an example, let us find the shortest distance from
a point P, say (3,4), to the circle centered at the origin,

radius 1. 2

X

P<3)¢>

So'uL‘tc,on (75, //>

Flg. 3
1
Minimize [(xl—3)2 + (x2—4)2]§; or simply

1 1 2 2 2
£o(x) = 2[(x1-3)2 + (x2-4)7]
subject to the constraint

£.(x) = %1 - (2 - (B)7] >,

where the inequality constraint has been imposed for
generality. Computing the directional derivative,
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£1(xgsh) = -%(3h1 + 4nf) =

i
d

£ (xgsh) = -3(3n! + 4n?) = k
we observe the reiation

4
ko -2 kg =0, (2.5)
which is the "multiplier rule" for this very simple case.

We note in this example that inside the circle
fi<:0’ while f,~>0 outside the circle. Now (2.5) requires
that ko and kl are both positive, both negative, or both
vanished. Thus if f,(x5) is a minimum, KO:>O; hence
ki:>04 Calling K the vector with components k (0 =0,1),
and K the class of inadmissible vectors, i.e., all %D

such that k0<:o, kl;zp, the multiplier rule (2.5) can be
restated in a disguised form:

No k in K is in K.

This is the form of the multiplier rule found in modern
texts such as Pontryagin [l]*.

One further example is the problem of finding the
shortest distance between the circle, Fig. 3, and a point
P which is constrained to lie on or above the line
3x3 + 4x4 - 25 = 0. The mathematical formulation is

fo(x) = %kal - x3)2 + (x2 - x4 2] = min

subject to

*Numbers in square brackets refer to Bibliography at the
end of the paper.
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!
M
’..J

i
P
=
)_|
o
N
|
-~
b
n
S
n
e
O

£.{x)

1

1l
W
el

f,(x)

To solve this problem, we look at all vectors K = (kl’kQ’k3)’
where k; = fi(x,h), with h an arbitrary vector. Here

x = (x5,x%,x3,x'); x4 = (3/5,4/5,3,4) 1s the known sclution.
K is k~ such that k; >0, k;=>0, and k,<0. Tnis can be
seen by considering how the functions fl and f2 change as

the point P and the terminal point at the circle move,

as in the previous example. For this case,

ko = £h(xgn) = -2[3(n’ - n3) + 47 - 1Y)
ky = £{(xg,h) = -(3n" + 4h®)
k, = £5(xy5h) = (30T + 4h?).

Tous the multiplier rule is simply

T
ko - '§ K.l - '5' k2 = Oo
If we write F = £, - ﬂ-f - E-f then the multiplier rule 1s
) ” 0 571 5 ~2°
4 4
¢ T = - - — =
F (xo,n) = kg > ky E ky, = 0,

which 1is equivalent to

r = 0 at x..
xi 0

[(x1 e x> 2] = min

|-

Exercise: Solve fo =

with constraints
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Calculus of Variations. 9.

1- (=2 - ()% =0

I
roj

fl(X) =

£ (x) =x3 +x' -7 >0

£4(x) = 3+ 2xt - 11> o,

Let us consider the theory of minima of functlions
of n variables in more detall now that we have an idea of
what must be observed, inview of the simple examples
glven above. Because every problem that is to be solved
numerically must be discretized, i.e., reduced to a prob-
lem given in terms of functions of n variables, 1t is
important to have a good grasp of the theory before pro-
ceeding to more advanced topics.

For the function f(x) = f(xl,xz,..,,xnx the level
surfaces are those for which f(x) = constant. As we know,
the vector normal to a level surface, i.e., the vector
in the direction‘of‘greatest rate of change of f, is

_Jf
rad £ and has the components f ==7 =1,...,n).
g p xJ ax (J > 3 )

1
The rate of change in any other direction h = (h ,he,...,hn)
is then grad f'h or
L . |
grad £'h = £'(xy,h) = g¢ f(xg+th)l g
df 1, 9f 2 of n
= h™ h™ + ... + h
d x1 %o d x2 %o AP %0

I 1 1 2 2 n n
where X, +th = (xo+’ch »Xgtth s+ oo sXgtth ).

355
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Calculus of Variations. 10.
Thus we write £ prime,

fg(xogh) = fxi(xo)hi = grad f'h = (grad f,h),

as the directional derivative of £ in the direction h.
If the level curve 1s as shown in Fig. 4, and assuming

grad # O, then for h;, f'(xo,h):>0, for h,, f'(xo,h)<:0g
and for hg; f‘(xo,h)=0, since grad f is normal to the

3rouot $
$(x)> 0
A3 (fa,zj ent)

level surface.

S(x)< O
5:Lx) - C

Fig. 4

The directional derivative can be modified by speci-
fying h to lie tangent to some curve x(t) that intersects
the curve f(x)=C, i.e., we require that x(0)=xo, x(0)=h.
Then

f'(xosh) ‘a% f(X(t)) t=0

-1
by

i 1
where x (0) has replaced h™.

The economy of the notation introduced here enables

-rern 35%
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Calculus of Varilations. 11.

us to write Taylor's Theorem as follows:

For one variable f(x) f(xo) + f'(xo) (x—xo) +

1l .n 2
5 f (xo) (x-xo) + uay

and

= 1 an 2
f(xo+h) = f(xo) + f'(xo)h +5f (xo)h + ceoo

For n variables we write Taylor's Theorem as

, : 1
f(x0+h) = f(xo) + f'(xo,h) + 5 f"(xo,h) + vees

where f'(x.,h) =f nt
0 xi

1.1

f"(xo,h) =1 h™hv.

xTxJ
Suppose that X0 1s the solution of the problem

f(x) = min.

How do the level surfaces look near xo? From the expansion

f(x) = f(xo) + %-f"(xo,x-xo) + ... = constant,

since f'(xo) = 0, In two dimensions,

2

f(xsy) = f(xO’yO) + fxx(x"xo) + efx,y(x'xo) (y'yo) +

f‘yy(y—_yo)2 = constant.

Truncation of the series at the second order terms shows
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that near the minimum point the level surfaces are ellipses.

For a problem with constraints, the classical pro-
cedure is to introduce lagrange multipliers, e.g., in the
problem

f(x) = min
subject to g(x) = O.

Form the function F(x) = f£(x) - Ag(x). We will choose
A.such that

F .(x,) = grad F = 0,
xi 0 X

where Xq is the solution point. There is a unique )\
provided grad g # O. To see this graphically, consider
Fig. 5. It 1is clear that in order for a solution to exist,
the curves f(x) = f(xo) and g(x) = O must not cross but
must be tangent at the solution point, for only in that
case is 1t possible to choose a ;X so that

grad f = A.grad g.
Qf)> gC%o) / Srai 3
~ \ \

§(x) < $ (%p)

g(x) = o
C(x) = -;(xa) o leve(

Fig. 5 surfece
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In the above problem we can accept either A.:>O or
Aﬁiioo However, for a problem with an inequality constraint,

say,
f{(x) = min
8(x) 2 0,

with solution Xgs it can be shown by similar graphical
arguments that in order for grad F = grad f - A.grad g = 0,
,X must be non-negative.

To summarize, we state the following without proof:

Theorem: For the problem

f(x) = min
and Case I: gl(x) =0
go(x) =0
or Case II: gl(x) =0
g,(x) =0
or Case III: gl(x)f;()
gQ(X) 2 0,

if x, 1s a solution, 1i.e., gl(xo) = 0, gatxo) = 0, then

there exist multipliers 'Xl and o such that, when we set
F=rf+ ,llgl + ,lzgz,
F 1 = grad F = O at Xqe
X
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For Case II1: A_ :> 0;
for Case III: ,X :> 0; ,l3 = 0.

These results will now be interpreted in terms of the
vectors K and K introduced earlier. If we write

~
|

= f‘(xoph)
k, = g](x4,h)
2 = gé(xo:h):

~
1

then for k,—>0 and kzzzo, we must have k,>0.
Equivalent to the above Theorem 1s the following:

Theorem:

Let K be all vectors k = (ko,kl,ke)_ and let
K ve all vectors k (EO,EI,EQ)’such that

k,<0, k,=>0, and k,=>0.

Then no vector k in K 1s in K.
More generally, for the problem
f(x) = min

subject to gCI(X) X=1, ve., m')

-0
(x) Z ( m'+l, ..., m),
e B

and 1if X0 is a solution, 1i.e.,

g~ (x5) = O (X =1, veuy m')
C¥(XO) 0 (/3' =m'+l, ..., m")
W) >0 (B = m, ..., ),

B
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then we have the multiplier rule:
There exist multipliers ,kozzp, ’ll’ coes ‘lm such that
1) , = 0 and

A
2) ,\ﬁ.. = 0,

3) Thé function F = ,lof - A ga/ (?’=1,...,m)
has the property that grad F=0 at x§. 'If the matrix

has the rank m", then ‘XO:>O and can be chosen ‘lo=1.

If so chosen, the multipliers are unique.

III. Classical Calculus of Variatlons.

Let us now Teturn to classical theory and derive the
necessary conditions for a minimum in a general form.
Problem (1.1), the brachistochrone problem, can be written

_ (2 Vaw® 4, o
J(y)—fxlﬁ dx = min. (3.1)

Where we now write y: y(x), xlfgxs;xz, [xl,y(xl)],
[xz,y(xa)] are held fast? and unessential constants have
been ignored. Another source of problems is that of the
minimization of the area of a surface of revolution, the
generator of which passes through any two points 1 and 2,
Fig. 6. ‘
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)4 )

Fig. 6

The functional to be minimized is

X X —s
IJ(y) = f 2o yds ='f 22Ty V14y'? dx = min, (3.2)
X

X 1

where the factor 27T may be dropped, since it is unim-
portant. A broad spectrum of typical problems is covered
by the followling forms of functionals:

X

I(y) = f 2y2 V1+y'2 dx = min (r 15 real)
X
1
Xo, 2 2

J(y) = J[ (y'© - y°)dx = min and

X1

X .
J(y) -—f E\A-y'2 dx = min.
x
1

In the general form, the fixed end point problem 1s written:

Determine ¥: y(x), X xS X5 with

[xl, y(xl)], [xz, y(xe)] held fast such that

o 7?«7362
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JW)=I?¥%:ﬂﬂ,y%ﬂbx=mm,
1

If the minimizing arc is y,: yo(x), x, < x < x
then we have the

Main Theorem: 1) f - y‘fy, 1s continuous along y, and

= (F-y'f ) = £, on yo; (3.3)

fy' 1s continuous along Yo and

foo=f_ onyg, (3.4)

d
dx "y y

which are the Euler equations, and
2) For admissible arcs with x, y(x), y'(x)

in the region of definition of f(x,y,y')s R

E(x, yo(x), y4(x), Y') =0, (3.5)

where E(XJYJY':Y') = f(x:Y:Y') -
f(x,y,y') - (Y"'Y')fy|(X,y,Y')-

(3.5) 1s the Weilerstrass Condition.

Before proceeding with the proof of the above Theorem,
let us consider a few examples.

If f = y'e—yz, then fy, = 2y', 1.e., there can be no
broken corners on Yor Since fx=0, we have the condition
from 1) above

f - y|fy'==_y'2 - y2 = constant,
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and since fy=-2y, the Euler equatlion 1s

1"

y +y =0,
which has the solution

y =a cos x +b sin x.

r
Ir £ = yoV14y'2, £, = LL_.

!
v _\/l-lﬂy'a
1
£ -y'f, =y° @ ——.

The Euler equation is then integrated once to gilve a
conservation principle:

—L - constant.

Exercise: Show in the above example that for r=1,

y = b cosh 5%2.

Discuss the cases r=£, r=-1.

In terms of the variables introduced in II., the
problem and. its associated Mailn Theorem are written

x: x(t)  t9 << ¢t

[+, =),  [&% x(t1))  rixea
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t1

J(x) = [to[t, x(t), J'c(t)]dt = min

xq:  %5(t), 0 < ¢ < £ is the minimizing arc.

Main Theorem: 1) f - ifk is continuous along x, and

0

4

1% (r - ifi) = f, on X4; (3.6)

fi is continuous along Xq and
= f_on x, and (3.7)
2) E(t, xy(t), x5(t), X) =0 (3.8)

for all (t, x(t), x(t)) in R, where
E(t,X,J.(,).() = f(t,X,}.() "f(t:x:i) -
(k—i)fk(t,x,i).

It 1s easy to glve a graphical interpretation of the
Welerstrass condition. Let Z = f(y'), holding x and y
fixed. In the z-y' plane, Fig. 7, at the point y'o,zo =
f(y'o), draw the indicatrix z-z, = fy,(y'o)(Y'—y'o), i.e.,
the tangent to the curve at that polnt. We see that
£(Y') = £y'g) + (Y'-y'o)fy,_(y'o). Thus the Welerstrass
condition is interpreted as the condition that the curve
z = £(y') lles everywhere above the indicatrix in the
neighborhood of the minimum Yo-
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Z A

SO/

-

70/ YI y
Fig. 7

Before giving the proof of the Main Theorem, we must
make some qualitative definitions.

Weak Neighborhood: For a given interval (xlfgxf;x2),
an arc x,y(x),y'(x) 1s saild to lie in a weak neighborhood
of another arc x,yo(x),yé(x), if y(x) and y'(x) differ
1ittle from yo(x) and yé(x) in the interval.

Strong Neighborhood: For a given interval (xifgxfgxe),
an arc x,y(x),y'(x) is said to lie in a strong neighborhood
of another arc x,yo(x),yé(x), if y(x) differs little
from yo(x). The Euler equations are derived using the
concept of a weak neighborhood; the Welerstrass condition
is based on the concept of a strong neighborhood.

Let us prove the Main Theorem in terms of variables
used in the second statement of 1it, (3.6), (3.7) and (3.8).

Let the function

n: n(t), t°9<¢<t¢!

31‘;6\ a2

’/”:i:::==““éﬁﬁj/’#””’;-zo==§7/(75)<Y7-7$)
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2l.

be an admissible (weak) variation, i.e., h(t°)=0, n(t!)=0,

so that the function

xgt €h: xo(t) + €n(t), 0 <t < ¢!

has the same end points as xo(t). € is an arbitrary,

small number. We write
t1

O(€) = Ilxgr€n) = [ o2lt,xy(8) + En(s), Ro(t) +

€n(t))at.
In order that Xq be a minimizing arc,

¢'(0) =0 and o"(0) = o.

Hence,
o

0 = ?'(O) = J' (x5, h) = J to(th + fih')dt and
tl

0 = "(0) = "(xqy n) = | q2(t,n,h)a,
t

where 2W = f_hh + 2f .hh + £ .hh.

(3.9)

(3.10)

(3.11)

(3.10) 1is analogous to the directional derivative intro-

duced in II. Let us fewrite (3.10) as
1
t :
J'(xg5 h) = J o[M(t)h(t) + N(t)h(t)] at.
t

We now state a

3T

(3.12)



Calculus of Varilations. 22.

Fundamental Lemma:

If M(t) and N(t) are plecewise continuous, then
| o(Mn + NR)dt = O for all admissible h,
/ t

if and only if N(t) = j M(s)as + N(£).
£

Proof: Let q(t) = j &M(s)ds, i.e., q(t) = M(t), and put
t

{
7t

h(t) = /’to[N(r) - a()]ar - c(t-t%), t.e., n(t% =o0. 1Ir

we choose C such that h(t') = O, then h(t) is admissible.
Let p(r) = q(r)+C, and write

h(t) = ‘[zO[N(r) - p(r)]dr.

Then p(r) = a(r) = M(r),
fl = N-p,
and finally,
1 . e . ¢l
j oM(t)h + N(t)h)at = j' o(ph + ph)dt = ph] = 0,
t t g

Q.E.D.

The proof of (3.6) and (3.7) of the Main Theorem
follows directly from the Lemma.

To prove the Weilerstrass condition (3.8), we refer to
Fig. 8. We will admit strong variations of the form shown,
calling the variation X(t), ty=t=<t + & (€ =0) and
X(t+€), tg<<t<{t'. Note that X(t,0) = x,(t).
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X

t
{0 to “:o"'é .Ll
Fig. 8
For the arc with corners,
t
I(xy) = $(0) < 1)(5-:) = [tgf(t, xo(t)y ky(t)at +
tot€ . £t . ~
J/ £(t, X(t), X(t))dat + | £(t, X(t+E), X(t+£))at.
tg S tgte
Hence,
0 < $(0) = £ty xo(tg)s X) - £(t, x4(8), &o(t)) +
" )
_ f x + f.x_. )dt.
i X
Jty X € €
1

t

By the Fundamental Lemma, the integral becomes kat\]t
0

Note that x ~ (t,0) = 0 and x . (8050) = X-%,(t).

Thus we have the Welerstrass condition
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0 < §1(0) = £ty xo(ty)s X) - £ty x5(ty)s xo(tg)) -
(x - xo(to))fk(t, Xg xo).

Transversality conditions arise in variational prob-
lems in which one or both end‘points are not fixed. For
example, in finding the shortest distance between a point
P in a plane and a curve yl(x) in the same plane, one end
point is fixed at P and the other is variable. It 1s clear
that the minimal curve Yo will be the straight line which
is normal to the curve and passes through P, Fig. 9. It
will have the direction (l,y'l), and the end-point con-
dition 1s

(1, v'1) L ax, ay,. (3.13)

(3.13) 1is called the transversality (normality) condition.

y; (%)

Fig. O

For the general problem

I'X
J = J lf(xs M) Y')dx = min
*o0
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with Xq constrained to be on some curve yi(x), the trans-
versality condition to be satisflied at the variable end

point x. 1s that line with the directions

1

f -y'.,£ ,, and £_, must be perpendicular to dxdy,. Hence

(f -y'y y,)dx + £ dy; = (3.14)

Yy

Let us prove (3.14) in complete generality in terms
of the variables used in the proof of the Welerstrass
condition.

x: xo(8),  t° < t<rT

s
[to, xi(to)] held fast,

T, x1(T) are éonstrained to lie on a surface S.
The problem,is

I(x) = g1, xH(1)] + [Tof(t, x(t), x(t))dt = min.
€ ‘ (3.15)

Let x4t (t) O<:t<:T be the solution, and choose
a one- parameter family of curves x(t, € ), t <\t<:T(€ )
Joining the initial point to a point T(E ), X(€ ) =
x(T(€),€) on S, such that 1t contains the point x
for €=0, i.e., x(t, o) = X, T(0) = T
function

0

0 We form the

(€)
J(g) = g[T(€), X(E‘)] + f: € £(t, x(t,€), x(t,¢c ))dt.
o A

Then

LW,
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dJ = dg + £(T)AT + - (£ o +‘-f-6‘i‘)‘dt,; R (3.16)
£ XX Tx X :
0 .

where 6)( = x.d€, and we have put €=0, d€=1.
(3.16) must vanish if Xy 1s the minimal arc. The Euler
equations (3.6) and (3. 7) must hold. Hence,

dJ = dg + fdT = O.
Integrating fdT by parts gilves

' t=T ‘
dg + [(f - }‘(if i)dT + f idxi] O - 0.

If g is absent from (3.15), then we have the transversality
condition given above. If not, then the expression 1n
square brackets must be equal to -dg.

Before we leave the classical theory we will discuss
briefly the theory of multiple integrals. Consider

= _/‘;j;‘(x: ¥, 2z, P, q)dxdy, (317)

where p = dz/3x and @ = Az/3y. The gradient of the
functional J is |

= j};f(fzé ¥t vfp(s zx+fq(5 zy)dxdy. (3.18)

If we define the inner product of the two functions u and v,

(u, v) = &f(uxvX + uyvsr)dxdy,
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then the gradient is (u, 6z). Suppose (S z=0 on the boun-
dary C of the region R!', the projection of the region
R of definition z(x,y), onto the xy plane.

/r{/_\
= (4, 7)

b4

K /

Fig. 10
Then from (3.18), the Euler equation is
Ny =L ¢ +§-f _f=0 (3.19)
o X p Yy 4d
and u=0 on the boundary.

Finally, let us discuss briefly functionals containing
higher derivatives:

x: x(t) £ <t < ¢l

J(x) = ftof(t, X, X, X)dt = min,

and let x(to), i(to), x(tl), i(tl) be held fast. The Euler
equation, which can again be derived by means of the
directional derivative concept, is

T I
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PSR- ST uP, (‘320)
X dt “x dté % 2 ' '

and the Welerstrass condition is as bgfore with
E(t, x, x, X, X) = £(t, x, x,.X) - £(t, x, x, X) -
(X - %)rg(t, x, %, ¥).
It is interesting to note how the above problem

can be cast into the form of a control problem, as intro-
duced earlier or discussed in more detail in V. Write

X = X, x° = x, u = X.
Then the differential equations of the process are
= x°, X" = u,
with xi(to), xi(tl) given. Then we wish to find x,u

for which
1

t 1 2
J = ftoi‘(t, x>, x°, u)dt = min,

which is a "control problem".

IV. Theory of Cones.

The theory of cones in n-dimensional geometry 1is use-
ful for discussing advanced theories of the calculus of
variations. The following 1s a brief introduction to the
theory.
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If we have a vector k = (ko’kl’ke"°"km)’ we define
the following:

Def: A Hyperplane 1s the plane L(k)=0 where
L(k) = aoko + Ctlkl oo+ Ak

Aokg - )‘11‘1 - e = Ak

= A - A ky  (T-L.2,...m).

or L(k)

Y ,
For example, in two dimensions, a hyperplane 1is any line

through the origin. A hyperplane divides the m+l dimen-
sional space into two half spaces L(k)>0 and L(k)<<O.

Def: A Ray 1s a vector k#0 and all (Xk((X=0), i.e.,
all non-negative multiples of a vector.

Def: A Cone K is a collection of rays. If k is in K,
so also is (Xk, XX =>0.

Def: A Convex Cone K is a cone such that if k and k'
are in K, so also 1s k+k', and Ck+(X'k', X =0, (¢'=0.
It is necessary that z:ﬁl.

X
Lemma I: If K and K are convex cones such that no k in
K-is interior to K, there exists a hyperplane L(k)=0
which separates them Into sets such that

L(k) > 0 if k is in K
L(k) < 0 if k 1s in K.

Def: A Tangent Cone to a region R at a point Xq is the
cone defined by the limlting positions of the rays through
Xqs directed into R, as they approach the positions for
which they are no longer in or on the boundary of R.
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For example, for a smooth closed region R, the cone tangent '

to R at a point Xq On the boundary 1is the half space
containing R. If Xq is interior to R, the tangent cone

is the whole space. At a boundary point of a region R

with corners, the tangent cone may be less or more than

a half space, depending on whether the corner is re-entrant.

Theorem: Let X be a closed, well-behaved set in x-space,
X = (xl,xz, e osxX™), let X, be a boundary point of X,

and let @ be the cone tangent to X at Xy. Assume that

& 1s convex and has an interior point. Let fo(x),

fl(x), ceos fm(x) be functions on X having derivatives
£i{xg,h), £1(xq,h)s «.o, £ (xg,h) at x5, and let K be all
vectors k defined by the formula

k ~ = f'p (xo, h), where h is in 6, (,D=O,l,,..,m).

Then K is a closed convex cone.
A proof of this Theorem will not be given here.
Lemma II: If k is interior to K, there is an h interior

to & such that ED=I[')(XO’B)’ and there exists a curve
x(t) such that

xH(t) = xb(e)

and

£~ (x(t)) - £ ~(x,) = tk (o<t<<E), tL.e.,
g px(g) = xop

and x(0) = h.

Let us now apply some of these results to one of the
problems we considered earlier. Suppose that x4 1s a
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solution of

O(x) = min
(X=1,2,...5m")

subject to fCI(X) =
)0 (Gomnn ),

and f/}(x

which means
CI(XO) = 0
f/3,(xo) =0 /3‘=m'+l,°°°,m"
u(XO) > 0 ﬂ"=m"+l, ooesly
and let K é% all k = (EO,,..,Em), i.e., ﬁd<io, k(=9
=0, k 4n arbitrary. Then no k in K is interior to K,
where K is‘defined by the previous Theorem.

To see these results, we suppose the last statement
is untrue and show a contradiction. If it is untrue,
then by Lemma II,

£olx(t)) = £,(xy) + tky ot< €
fCI(x(t)> = fCI(XO) + tECI

(x(t)) = £,(xy) +tkp,  and
£ ooal(x(t)) = £~ ulx,) + thk~ n.
S g B

But the first equation leads to the conclusion that
fo(x(t)):>fo(xo)s because t=>0, ko<iO, a clear contra-
diction.

Theorem: If X0 is a solution of the above problem, there
exist multipliers /\O>O, /\1, cooy Am such that
1) =0

2) A =0
J8
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3) The function F = ll o A has the property
that F'(xo,h)ZO for all Z

Proof of 3): F'(xy, k) = lof'o(xo, h) A,)/f,'] o’ h)
= Ax, - 17k7

L(k) = 0 for k in K.

Proof of 1) and 2):
Choose k = (-1, 0, O, ..., 0) in K. Then L(k) =
Ao L Ao,

Now choose k = (-1,0,...,0,k .,0,...,0) such that
there are at least m'+l zeros before ka and at least
m+1l-m" zeros after ka Then
where if k is any positive number A O, and if k

g Yy P 3 O/> s a

is any non-positive number, )TT =0,

V. Control Theory.

In control problems it is customary to think of the

states of the systems being controlled as being represented

by the vector

1 2
x: x(t) = (x (), x°(t), ..o, x(t))
and the control by another vector

ur u(t) = (ui(e), ul(t), ..., u(t)).

‘378
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The process, as 1t takes place in time, 1s governed by
differential equations

it = ot e, x, w),

and usually starts at some initial point

(60, x1(t%)] = ot

A given choice of u(t) gives an initial value problem for
the state

i = rl(s, x(8), u(t)) = gl(t, x)

(%, x1(£%)] = ot

However, the problem in control theory is to détermine
u(t) such that we hit some target while minimizing some-
thing, say time, fuel consumptlon or money.

An example of a simple control problem is to choose
u(t) such that at a fixed time T you reach x (T) = ¢t in

such a way that

Tr .
7= [ ole(e), x(2), u(e))ae = min, (5.1)

It can be seen that this problem 1is contained in the clas-
sical variational problem discussed in I., when T 1s re-
placed by t1 and ui(t) is replaced by ii(t).

The problem can be modified in several ways to make
it more meaningful, but more complicated. We could add
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constraints of the form

\ui(t)l <c

or, say inequality constraints

b ¢ (&, u(t)) =0
o (t, u(t)) =0  or
¢‘éi(t: x(t), u(t)) = 0, etec.

Let us translate the above problems into the language
and notation of Pontryagin [1]. Let

p,(t) = fxi(t, xo(t), x4(t)) (5.2)

and let

ut =it ud(e) = x5(t).

We now define a new function

H(t, x, u, p) = pyf, - £(t, x, u). (5.3)
‘The minimizing arc Ug. X, has the property that

H(t, xo(t), u, (b)) < H(t, x,(t), uy(t), p(t))s  (5.4)

il.e., H 1s minimized over all admissible functlons u.
Hence

H, =p, - £ ,(t, x, u).
ol i L

The classical Welerstrass condition comes directly from (5.4):

- . 380
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0 < H(t, x5, ug, P) - H(t, x4, u, p)

i

1
pi(t)uo - f(t: xo: uO) - [Piu - f(t: XO’ u)]

i 1

E(t, Xgs Uge u).

At thils point one can make an analogy to the theory
of Hamilton-Jacobl dynamics. If H were the Hamiltonian,
then the Hamllton-Jacobl equations would be

The Hamiltonian would be defined by the definition of
H(t,x,u,p) and the equation

In the classical variations theory, (5.5) are the Euler
equations.

Recall the modern brachistochrone problem dealt with
earlier:

2t 3 :2 4 .3 4

=x°, xX“=x", x> =F cos u, x =F sin u-g

with [xi(o), xiT] given, choose u such that T = min.

nET,
-Zg!
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This problem also fits very easily into the general con-
text of Leitman.[z], who discusses problems of the form

x = X(t, x, y) + E%3--003 yl

vy =Y(t, x, y) + 3%2 sin ¢f
m= - %3 0 55/3 fg—[gmax

¢(T, x(T), y(T), *(T), y(T), m(T)) = min,

e«
i

with an initial point given. Such a problem 1s called a
Problem of Mayer in classical texts.

Let us now state the necessary condltions for the
solution to the following general control problem:

x: state variable xi(t) (1=1,...,q)
u: control variable uk(t) (k=1,...,u),

where tofgtjgmo
The governing differential equations are
}.(i = fi(t, Xy u)o

We are given [to,xi(to)] fixed and xi(T) fixed, and we
wish to make

J(x) = g(T) + f:of(t, x, u)ds = min. (5.6)

Assume that xé(t), ug(t), thgﬁE;To 1s the solution,
and define as before the function

St ago
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H(t, x, u, p) = pif1 - flof. (5.7)

Then there exist multipliers ,X::>O and pi(t), not all
zero, such that

;ci-‘- i

. P1 (5.8)
pi = -H 1°

the Euler equations, and
H(t, xo(t), u, p(t)) < H(s, x,(t), uy(t), p(t)) (5.9)

for all (t,xo(t),u) that are admissible. Admissibility
may be defined by constraints of the following general form:

o <u <egq, [WF|< e, (u) > o.

%CI
Equation (5.9) is the Welerstrass condition for this
problem.

The transversality conditlon takes the form
X' (T) - H(T, x,(T), uy(1), p(T)) = O, (5.10)

The analogous form of the transversality condition for
the classical approach is given in III.

Let us solve the rocket problem (modern brachisto-
chrone): '

3 4

H = p;x” + pox +‘F(p3 cos u + pu sin u) - D)8
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But E% H=H =0; therefore H = constant = ;\Og'(T);

g(T) = T; hence H = ,X::>O along the minimal curve. Now

p, = -H | = 0 /. P, = constant
X :
Py = -H , = 0 o Py = constant
X
p3 = _Hx3 = -py p3 is linear in t
D) = _qu = -P, ;. py 1s linear in t.

Let §=p3, T =py, and we see that §=O, and i’i=0; hence
the point‘(§';n ) moves at a constant rate. Since we have
no constraints of the form @Ci(u)zzp, We must choose u
such that H=max on the minimal curve, Hu=O on the curve.

0=H, = F(—p3 sin u + p) cos u) = 0.

Hence tan u = gﬁ = lL.

3¢
The properties of the solution have been obtalned without
finding an explicit solution. The solution says that the
thrust force F is always directed to a point that moves
on a stralght line at a constant rate, Fig. 11.

&N =

\u_
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39.

Not all problems in control theory have solutions,

i.e., not all systems are controllable.

To illustrate

the concept of controlability, let us suppose a problem is
governed by a set of differentlal equations

<t = fi(t, X, u).

We now ask whether there are functions u which can get

us from Po to Pl.

If we can get to Pl’ can we get to Pg, a neighboring point,
also? It might not be possible. To be explicit, consider

the geodesic problem

y: y(x) Xq < x f;_xe

X

J(y) = jﬁ 2Vl+y'2 dx = min.
X
1

Let us introduce the function

z(x) = j’X V1+y'2 dx,
*0

and put y'=tan u, z'=sec u; xl=0, x2=1.

y(xy) =0
z(xl) =0

N .
f 2Vi4y'© dx = min,
O N

z(x2)

ige 385
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which 1s a Problem of Mayer. The solution n=constant 1s
known a priori. Let us assume that y(x2)=b and x2=l.
The properties of the solution can be most easlly shown in

a figure,.
=

[T ER

Q — 1 X
™ Ln'\Q\r‘Q_\ —
475(X)= é —
X

(1yb
\3

AN

Fig. 12

The line OP represents the locus of points of Z for the
solution curve yo(x). For any variation from the true
solution, the corresponding value of Z must be larger
than the value of Z on OP for the same set of values of
(x,y). We see that there 1s a hyperbolic cone of reach-
able points. The line OP is on the boundary of the cone.
If we draw the intersection of the cone with the plane
x2=1, we obtain Fig. 13. Even for the simple problem dis-
cussed here, there may be points z(x2) that cannot be
reached, regardless of the control available.
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2

LCEACH A
rol

4

This lack of complete controlability is typical of Prob-
lems of Mayer.

Finally, let us discuss a particular case of the con-
trol problem where we have constraints of the form

‘u’ fE 1.

Let the problem be to approach the origin in i,x phase
space in minimum time, subject to a control u and differen-
tial equations

o1 2

X X
2
X

= U

The function H = plx2 + pou. We must choose u to maximize
H subject to Iu <1. Carrying out the steps

1 = 0 hence P, = = constant

c
1
5 = Py hence p, 1s linear in ¢,

Yo OQ
|

il.e., Py, = 02-011:° For fixed time, we will maximize H
by selecting u. It 1s straightforward to show that if
pe(t)>0, u=1l, and if p2(t)<0, u=-1. The solution can be

written

. 387
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u = sign(c2 - clt)

ho.

in phase space. x
w==/ > ~!
4
/
1
\
\ =/
N
=
~
~o
P2
Fig. 13

Starting at, say point Pl in phase space, the trajectory
follows the curve shown. First u=-1 up to point A; then
u=1l to the origin. Similar remarks hold for point P2°

VI. Problem Transformations.

By means of simple transformations, we can show that

all of the above problems are, in principle, the same.

The general control problem 1s given in terms of

t) state variables
t) control variables

subject to differential equations

388

0 < ¢t < ¢l

i=1,'oo;q
k=l,...,n,
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xt = elt, x, w),
and the formulation may depend on other parameters

Wd d=l,...,l",

and may be constrained by conditions such as

bcz(u) = 0

br(u) =0

0[(i(tau») = 0
4)a.(t:x:u) 2 0, etec.

As Case (1), consider the constraint
4)C-((t: x, u) =0 (6.1)
with end points expressed parametrlcally as

9 = 9(w), x1(£9) = x1w) ¢
el = 1t (w), x(el) = xHw). (62)

We impose isoperemetric conditilons

1
t
T () = 5o l) + ftof7<t: x(), u(t))at = o, (6.3)
and we wish to make
tl
I(x) = g(w) + ftom, x(t), u(t))at = min. (6.4)

If we have a problem wlth constraints of the form

- 389
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bc(,(t, X, u) =0 (' =1, «v., m!
¢an(t: X, u) 22 0 &' = m'+l, ..., m,

then to get the formulation, Case (1), we can introduce
more functions u by writing

¢m'+J(t” X, u) = (un+J)2
or
¢ml+J(t: X, u) - (un+J)2 =0 J=1s «¢.> m-m',

which are just m-m' more constraints of the desired form
¢ (t,x,u) = 0. This method, however, does introduce
singularities, so caution is in order. Isoperemetric
inequalities can be similarly transformed. In principle,
Case (1) contains all problems which include inequality
constraints.

Let us discuss now the Isoperemetric Problem of Bolza:

x: xT(t) 0 <t < ¢t 1=1,...,q

with constraints ¢Cx(t,x,k) = 0 A =1,...,m
0 0 1

J7mx>=g]4t,:dt),t%.ﬂt))+

t- (6.5)
[t(of..}/(t, (), %(t))dt = 0 Y<l,...p.

To(x) = go(t%, x(£), 1, x(t1)) +

t
ftlfo(t, x(t), x(t))dt = min. (6.6)
0

- 390
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Remarks similar to those made above hold here for inequality
constraints.

Consider, as special cases

Case (1) f.= 0 the Problem of Bolza (6.7)
Case (11) f7 = 0

f?)/ =0 the Problem of Mayer (6.8)
Case (iii) f~ =0

Z =0 the Problem of Lagrange. (6.9)

We will show that all three problems are basically the
same, first showing that the functions f can be eliminated,
i.e., we can write equivalent problems involving no inte-
grals.

Let the problem be

X: xi(t) &
ye yp(t) where yp(t) = ftofpdt pP=0,1,...,p.

The differential equations are now

Oog(ts % %) = 0
yP - £5(t 5 %) =0,

wlth side conditions

[
O

J (x) =g +y7(t)-
7 7 yp(to)=0.

The problem reduces to a Problem of Mayer, for we now wish

i)

" 391
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to make

0,,1
Jo =8y + ¥ (t7) = min.

This transformation does not preserve the concept of strong
neighborhoods.

Let us consider a more general Isoperemetric Problem
of Bolza. Let the state varlables be

X: xi(t), WCT 1=1, ..., q
do= l, -uo_fp
£0 < ¢ < ¢t

assuming that the state also depends on parameters w, and
wlth the differential equations

ch(t, X, x) = O, (6.10)
We have end conditions

S s i,,.s is

t® = T (w), x (t°) = X"(w), s =0, 1 (6.11)

and constraints
1

t
JT(X) = g7(w) + ftof,),(t, X, X)dt = 0 7=1,...,r,
(6.12)
and we wish to make
£t ,
J(x) = g(w) + J(tof(t, X, x)dt = min. | (6.13)

If w appears in the integrand of (6.12), we merely add the

392
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Q+Cf and the differential equatlons
kq+ =0, Then the integrand in the constraints corres-
ponding to (6.12) contain no terms in wV.

new gtate variables x

To see that the problem consisting of (6.5), (6.6)
and (6.7) 1s a special case of this, let

0 = wl, x(80) = with, 1o 32 L i(gly o atedt

The problem (6.10), (6.11), (6.12) and (6.13) is,
conversely, identical to (6.5), (6.6) and (6.7). If we
append to the set of differentlal equations éssociated
wlith the latter problem the following,

T _ o

W s, 1l.e., w(T = constants, the end values,

then we obtain the problem
X: xi(t), wa(t).

Differential equations
t, X, 5():

with end condltlions becoming the constraints with f7/eao
0 o) 0] 0 0]
£2 - T0(w(t)) = 0, xH(t%) - xOw(t?)) = o,
1
£l - rh(w(st)) = 0, x(th) - xM(w(th)) = o,

and we wish to make

= 0 ¢ % = m
J =g(w(t”)) + J[tof(t, X, x)dt in.

393
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By similar arguments and transformations, it 1s pos-
sible to eliminate the constraint functions J~ (x) by
transforming the variational problems to contr'ol problems.
It is straightforward, conversely, to show that the con-
trol problem is a variational problem of one of the speclal
types (6.7), (6.8) or (6.9). Thus, all of the special
types of problems we have formulated and discussed are
basically the same. The type of formulation one chooses
is a matter of taste.

VII. Methods of Computatilon.

The method of steepest descent, or gradient method,
can be most easily discussed in terms of functions of a
finite number of variables. Let f(x) be a function of n

variables x = (xl,xz,oo.,xn). The derivative of f in
the direction f 1is
f'(x, h) =g " h = |g| ' lh. cos 6, (7.1)

of By

3 o e ¢ 9
axl %xn
between g and h. For fixed Ih s I'' 1s greatest in the

g direction.

where g = grad f = ( 5 and 6 1s the angle

Recall that at the minimum point X, we can expand
£(x) = £xg) + 3 £"(x0s x-%g) + oo - (1.2)

If we truncate this expression at the second order term
and set f(x) = constant, we have an equation for an
ellipsoid in xn-space. Thus, starting with some approxi-
mate value of the solution x%, we use the concept of the

-39 4
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gradient, or direction of greatest change of f, to follow
the "flow lines" from some ellipsoid f(x%) = constant to
the minimum point of £, i1.e., we must solve the set of
equations |

—_—— = -f == -g ° (703)
t xi

For numerical computations, (7,3) 1s discretized to

ZXxi =‘—giZXt

or the iterative form

1 i 1

Xpe1 = X - (&g (7.4)

Equation (7.4) is the Gradient Iteration Formula, and
embodies in it the Method of Steepest Descent.

An advantage of gradient methods 1s that they pull
the solution away from saddle'pdints. Usually the greatest
difficulty in application is that one encounters long,
narrow ellipsoids. To overcome this difficulty, one must
apply special methods to choose (X in (7.4).

To discuss the gradient method for integrals, consider
the problem

x: x(t) (£° < t < t1)
[0, x(s9)], [¢%, x(t1)] heia rast

¢l , |
J(x) = -[to(f(t), x(t), x(t))dt = min.
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We will admit corners in the minimizing arc

x5t Xo(t) (0 <t < ¢,

and we will call a variation h admissible if

h: h(t) (t° <t <¢h)

and h(to) = 0; h(tl) = 0, Note the vectorial character
of h(t). If h is admissible, so is Xh. If, in addition,
g 1s admissible, so 1is |

X h + X 8-

We define the inner product of h and g as
1

t .
g h=(g h)= ftoé(t)h(t)dt. (7.5)

Let us def;ne

t

g(t) = fto [£2(Ts x(1)s %o(M) -

T .
thofx(s, x5(8), xo(s))ds - c]dﬂﬁ (7.6)
where c¢ is chosen so that

g(tt) = o. (7.7)

0]
Since g(t~) = 0, g 18 an admissible variation. In fact,
g 1s the gradient of J at Xq» hence

”"n

LR
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tl
T'(xg B) = [ o()h(e)at = & " n, (7.8)

t
where g(t) = £, - J(tofxds - C.

Equation (7.8) must hold where
tl

'h‘ - J( h2dt

t

is held fast. Note that J‘(xo,h) has a maximum value
for fixed |h[ when h={g.

For numerical solution of this type of problem,
we can use the concepts developed earlier for functions of
n variables, i.e., (7.4), but to use our definition of
gs; we would rewrite (7.4) as

xn+1(t) = x (t) - (g, (t). (7.9)

For a general discussion of gradient methods, see Stein,
M., Jnl. of Research, Nat. Bur. Stds., RP2330, V.48, 1952,

The freedom of choice of the definition of gradient
in these numerical methods 1s unconstrained. Suppose we
define the dot or inner product of the functions g(t), h(t)
as

t1
g h= (g, h) = J,tog(t)h(t)dt. (7.10)

For J, defined as before,
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1
t .

J'(xgs h) = Jf of,n + £ h)at. (7.11)
t

Integrating by parts with h taken as admissible, we obtain

1
t
J'(xo, h) = Jf oghdt (7.12)
t
with
g=1, - g5 (). (7.13)

We could call g in (7.13) the gradient. Analogous to
(7.3), we would have to solve

-‘g—;f- (t, 8) = g5 (fy) - £, = -g (7.14)
x(tog s) = 0, x(tl, s) = 0, where x(t, 0) = Xqe

For example, if
d x\?
Jt

1
2

- 1.2 _
_.2x

f
f}'c::x,

and we have the system

with x(t%,8) = 0, x(t1,s) = 0, and x(t,0) = x (t). Note
that by using the gradient approach in this simple example,
we oktain a heat equatlon which gilves the set of flow
lines of the energy integral.

Of course, the above problem of minimization could
have been handled by what Courant and Hilbert [3] call
Indirect Methods, that 1s, by solving the corresponding

® wr
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Euler equation

e

3t (f

X = I

subject to the two point conditions
x(t%); x(t!)  fixed.

In the same book, Direct Methods are dlscussed. For example,
if we define [l = inf J(x) for all admissible x, the

problem is to find LL by constructing a minimizing sequence
xq such that

1im J(x_.) = [/ .
q—ee 9 H

On the other hand, we could approach the problem by a)
finding [L, b) showing that id—axo, and then c)

U = 1im J(xq) = J(xo). The latter approach is that of
the Tonelli School in Italy, and stems from work by Weler-
strass and Hilbert.

As the first direct method, consider the following
basically Eulerian technique for obtaining a minimizing
sequence. Suppose the interval of interest is (tOS;ﬁS;pl).
Divide the interval into q sub-intervals of length

1
t
where q 1s some integer. Then the integral Ofdt can

t
be written as a functlion of g variables gl’ §2, caey gq:

399
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F( gls §2) ¢ o)y gq)ﬁ

and the minimum of this functlion can be obtained by the
usual methods for functions of n variables. One disad-
vantage of this method 1s that 1t usually involves too

many variables.

A second direct method, which 1s very useful when the
side conditions are linear and the integrand functlons are
quadratic, 1s the Rayleigh-Ritz. The detalls of this
method are discussed in Courant-Hilbert.

For another approach, we observe that the admissible
variation ‘

h = x(t) - x,(t)

of

with the properties
0 1

n(t”) = n(t~) = O.

We can estimate h by choosing a complete set of functions

hk(t%, k=1,2,..., which vanish at t° and t%, for example,
if t =0:

W, b
hk(t) = sin '—;—i' (()%( = kﬁ). (7°15)

We then write

n(t) = 1};1 A by (t). (7.16)

Hence
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x(t) = x5(t) + Ctyhy (t) + ... +C(qhq(t) + vee (7.17)
Thus

I(x) = F(Xys -oon Xy) (7.18)

if we terminate (7.17) at the qth term. Thus we again

have the problem of minimizing a function of q variables.
The effectiveness of this method depeéends, as does the
effectiveness of Rayleigh-Ritz, on the choice of the func-
tions hk(t).

Side conditions of the form
1

K(x) = fzog(x, t)dt = C

m2rely lmpose on the resulting problem of minimizing
F((X) conditions of the form

G(C113 Kps coes CIq) = constant.

Iterative methods play a dominant role in the prob-
lem of minimizing integrals and functlions of a finite
number of variables. In general, we are given the task
of finding the minimum of F(x,y,z). If we guess a set
xo,yo,zo that is close to the answer, we will get conver-
gence of an iterative scheme, which we can approach as
follows:

1. Given X,,¥,,2Zq, minimize F(x,yo,zo) solution: x,

2. minimize F(xl,y,zo) solution: 1y,

3. minimize F(xl,yl,z) solution: zj,
401
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and so on in this Gauss-Seldel-llke procedure.

Let us define formally an 1lterative procedure. Let
X, be an initlal guess (a vector). Then we write
= -+ o1l

as our 1lterative process. hq is essengially a choice of
direction along which we go from the q estimate to the
a+1*? estimate; (¢, 1s how far we go in that direction.

To use (7.19), we must have a program for selecting Xq

and hqn

Newton's method for finding the minimum of a function
of n variables 1is basically written in the form (7.19). 1If
Qo
F(CX) = F(x +(Xh) = F(x) + XF'(x, h) + =3~ F"(x, h),
(7.20)
truncating the Taylor Serles at second order terms, then
we minimize the right hand side with respect to (X and
obtain

_ F'(x,h
X = “F'(x,h)?

and hence we take

F'(X »h )

&y = -FW—CE‘L,HQ-)-. (7.21)

q” q

The Method of Conjugate Gradients (Hestenes, M.R., and E.
Steifel, Jnl. of Research, Nat. Bur. Stds., RP2379, V.49,
1952) is a variant of (7.19). For a discussion of itera-
tive methods for linear systems, 'see Hayes, Nat. Bur.
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Stds., Report No. 1733, 1955.

The gradlient method, as applied to the problem of mini-
mizing an integral, is discussed in RAND Report, RM102,
1949, by M.R. Hestenes.

Let us discuss in some detall an iterative method
for finding the minimum of a function of n variables
F(x) = F(xl,xz,...,xn). By iterating on x, we hope to
improve this approximation of the solution by choosing a
CSx such that

’}\C,='x+ (Sx:x-*-ah,

loee, Xgpg = X4 + Cthq. Program for (X:
a) Ciq = (X = constant. Usually if (X 1s chosen too
large for convergence, choose (U * = ({/2; if too
small, choose (y* = 2(X. One can also step (X
to find the value for qulckest convergence.

F'(x_,h)
C(q = —ZBF"{xq,hq)’
where we have added a scale factor
(1- € < N < 1+€). If/3<i], one says he 1s
under-relaxing; 1f‘/3:>1, over-relaxing.

Program for hq:

a) Choose n linearly independent vectors

ul,uz’ .o o,uno

Let hq be some comblnations, say

hq = (ul,ug,...,un,ul,...).
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This is the usual Gauss-Seldel procedure. Any
combination of the uJ can be made.
b) h = -grad F. Recall F'(x,,h) = F ,n' = grad Frn.
X
Usually we define the dot product of the two vec-
tors X,y as
X 'y-= X3Yq-
We could define

X y= EZsijxiyJ,
a positive definite form. Then, for quick con-
vergence, we could wrilte
1] OF
Axd’
where gi,gjk = é}?, and then choose giJ so that

(grad F)1 =g

grad F points toward the minimum point, not normal
to F = constant as 1s usually the case. This

lmplies a particular choice of hq.

Newton's method appears‘in all phases of numerical
analyslis. When solving the equatilon

G(x) = OJ,
we write

a(x + (Sx) = G(x) + G'(x)éx,

set the right hand side equal to zero, and plck

G(x
Ox = G'ix;‘

For a system of equations Gi(x) = 0, we put
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0 = Gi(x+ CSx) = G (x) +§% 6x'j,
SG
dxd

Then we put g (x) =
matrix, and then let

&&J = —ngGk(x).

F D F

If G, = ——, then g —_—
1 gxi’ 1J Bxis XJ

, not necessarily a symmetric

is symmetric.

1] QF .
D xd

but if F is of an indefinite form, we may get saddle points.
Suppose we are solving a minimization problem with constraints

For quadratic functions F, we choose (grad F)i = g

min
O.

f(x)
g(x)

The first necessary condition is

£y

+-,lg = 0,
X xi

By Newton's method,

1
£, 0+ ),gi+(fij+kgxixj)(5x +6/\gxi=o,

X X X X

and
g+ g J(SXJ = 0.
X
To solve these equations for (ij and (SA » we must have

£ + Ag g

I3 0
<9
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and then to lterate, we put

oy =+ 6

/\q+1 = ;\q + (S)\q.

Finally, let us consider Newton's method for finding
the solution of a simple differential equation

2 1]

T=1+y3'" -yy" =0 subject to y(a) = A
y(b) =B

with y >0

hence y">0.

This 1s the catenary problem. To solve this, guess a
function y(x) to satisfy the boundary conditions, and set
T+(ST =0, 1.e.,

T+2y' 0y - Syy" - yOy" =0

with Oy(a) = 0, Oy(v) = o,

Improve on the guess by solving this linear equation for éiyo

This method is also applicable to simple and multiple
integrals.
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Calculus of Variations. 61.
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Rendezvous Problems

These talks will be roughly divided into the following topics:

VoFE W O

Definitions

Definitions

Ascent trajectories
Parking orbits
Mission analysis

Rendezvous in planetary travel

The definitions of the major symbols are:

0 DE by Sw

In terms

l. r =
b
2. r =
a
3. p=
L T

semi-ma jor axis

eccentric anomaly

true anomaly

parameter of ellipse - semilatus rectum
period

inclination angle

argument of perigee

argument of ascending node

¢ eccentricity

of the quantities we will use the well-known relations:

a(l - e); pericenter distance
a(l + e); apocenter distance

a(1 - e2) ; semilatus rectum

-5 7Ta3/2 -1/2’

/u,
1.407639 x lO6 ft3/sec for the Earth's gravitational con-

stent
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Rendezvous Problems 2.

5.
6.

n=(» = 2%;; = /LLl/za-3/2 ; mean motion

M=n(t - 7 ) ; mean anomaly
T = time at epoch.

If the Earth's potentig]l function is represented by

T. U=;€‘* [l- Z Jn(%)nPn(sinL)]

| vwhere

=2

Legendre polynomial of order n

Latitude angle,

then the first order secular perturbations in the orbital elements of

an Earth

8.

10.

11.

12.

13.

vwhere J2

satellite in the absence of air drag are:

2
. - - R . - :
Qs = - 2 7%- J2(p) cos i rad/sec ; R = equatorial radius

— 2
d)s=%’v7%—J2 (%) (-'.!.+5cos2 i) rad/sec
2
ﬁs = E_e- \, 7§—J2 (%) ’J 1-e° (-1+3 cos® i) red/sec

2
-377 I, (%) cos i rad/rev.

Q)

&

2
=3 7TJ2 (%) (- 1/2 + 5/2 cos® i) rad/rev

=
]

2
s =3 T I, (%) Vl - ° (- 1/% + 3/h cos> i) rad/rev

16

= 1082.28 x 10™".
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Rendezvous Problems 3.

Example:

For an orbit with i = 300 and an altitude of 300 statute miles, one
finds that

[

()= -0.442 ®/rev.~y - 6.8 °/aay

W = 0.705 0/rev. > 10.8 O/day

Rendezvous Phases
Rendezvous can be divided into the three phases
i. ascent of injection into transfer orbit
ii. terminal phase
iii. docking - contact between ferry and target vehicles.
There are a wide variety of possible types of ascent maneuvers and
a few remarks will be made concerning the characteristics of some of

the basic types of ascent maneuvers.

a. In - plane ascent:

An in - plane ascent requires that the target
vehicle travel in a compatible orbit; that is, an
orbit in which the target passes over the launch
site at least once per day. This is & severe
requirement and its practical reslization will
probably require means for adjusting the orbital '.‘E5r354‘
period of the target vehicle. Figure 1

Transfer Orbit

T

413
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Rendezvous Problems L,
b. Adjacency transfer:

The ferry is inserted into an orbit close to that of the target,
but not necessarily in the same orbital plane. The ferry transfer or-
bit is selected so that its orbit is coaltitude and has the same velo-
city as the target at the time at which the two orbits intersect. At
the time of orbit intersection, the ferry is given & velocity impulse
such that its orbit plane is made coincident with that of the target.

¢c. Two - impulse transfer:

The first impulse inserts the ferry into a transfer orbit such
that the apogee of the transfer occurs at the orbit of the ferry end
the timing is such that the ferry and target are simultaneously at the
apogee of the transfer orbit. When the two orbits touch, a second
velocity impulse is given to the ferry to bring it up to orbital speed
and, if necessary, change its orbital plene to coincide with that of
the target.

d. General ascent:

The ferry is injected into a general transfer orbit which is re-
quired to intersect the target on either the outgoing leg or the in-
coming leg. The timing problem for these ascents is very critical and

typical launch windows are only of about 3 minutes in duration.
e. Parking orbits:

An intermediate parking orbit greatly simplifies the timing prob-
lems for en ascent transfer trajector. The ferry is first launched in-

to a circular orbit at a lower altitude than that of the target. Be-
cause the ferry will have a shorter period of revolution, it will gain
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Rendezvous Problems 5.
on the target with respect to their geocentric angles. At the proper
time, the ferry is given a velocity impulse into a transfer orbit which
will bring it into position for the final rendezvous maneuver.

Velocity Penalty for Maneuvers

a. Equal velocities, in - plane meneuvers:

Suppose that the interceptor (ferry) and the target vehicles have
the same velocity magnitude but different directions; Figure 2.

For small A ,
w. Av=ov.

For a typical velocity of 25,000 ft/sec, the velocity

h

increment required per degree separation of the paths

o :
would be of the order 2\77‘@,\ AV,
Ce
i Frery
15.  /\V = =z= x 25 x 107 = 1436 ft/sec. n
180 .
Figure 2

This is & costly maneuver as measured in units of required velocity

impulse.

b. Two - impulse maneuver: /@ﬁqjee

"7/061/(’" =~

From Figure 2,

2 2 2
= - X ,
16. V2 V1 + VO 2V1Vo cos

Figure 3

The velocity penalty for the plane change is

<1415



Rendezvous Problems 6.

7. Av =V, +V, -V,

for small <X, such that sin > o X , 16. and 17. yield

v,V

10
18. AV =m) X

2

Example:

= 10 x 105 ft/sec, V 3

Typical nunber at apogee are Vl 5 = 15 x 10, VO =
25 x lO3 ft/sec. If A = 5.70, then [SV’:§:83 ft/sec. Thus the two-
impulse meneuver is less costly than the previous case. The economy
partly comes from the fact that the velocity impulse can correct the

interceptor's speed at the same time that jtg orbital plane is shifted.
c. Dog - leg maneuvers:

Dog - leg meneuvers during thrusting may also
be used d%ggggztggnsfer trajectories to effect an
orbital plane shift. Thrust is made in the trans-
verse direction by tilting the rocket thrust by an

angle E, from the vehicle's flight path. Let

ZXV = required increment of velocity.

Figure U
It can be demonstrated that if y <LK io, then for § held constant,

9. L= =-A§-15
) 0

Example:

If :'co = 10 x 10° ft/sec, [\V = 15 x 103 ft/sec, one finds that < = 1.5§ .
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Rendezvous Problems 7.

Thus the dog - leg maneuver can change the angle of the trajectory
blane on the same order as the rocket motor gimbel angle used, and with

minor penalty on the forward acceleration.
General Direct Ascent
a. General Direct Ascent

The rendezvous window is defined as the interval of time on the

!

launch pad during which a rendezvous ascent can be made without an "ex-

cess" fuel penalty.

It has been established that Hohmann - type transfers produce

minimum energy transfer. Soft - rendezvous is the situation in which

the speed and orbit direction &re the same for both the interceptor
and target vehicles. A Hohmann -
type transfer can be used if the

target is at AL at interceptor

launch (shead of insertion point).
The intercept takes place at AR.
The general cases occur for
the target at either By (1leading)
or C, (1lagging) with the inter-
cept accomplished at the intersec-

tion points BR or CR’ respectively.

One can investigate the maxi-
mum spread in angle between initial /“‘“‘:‘7 et ':)r/glg

points BL and CL which determine the

allowable launch window with a re-

striction on the available /\V

capability of the interceptor. _ Figure 5
Transfer Orbits
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Rendezvous Problems ' 8.

Suppose that the total vehicle thrust
capability is

20. vy + [\Vp = 27,000 ft/sec.

One can show that the launch window shown
in Figure 6, is - T.4 to 6.1° or roughly
130, which corresponds to ebout 3 minutes

for typical orbits. If the thrust capabili-
ty is increased to 3 x th ft/sec, the

launch window increases to about 15 minutes.

Figure 6
Launch Windows

It is thus seen that the launch window is very sensitive to the total
vehicle capability.

b. Indirect ascent schemes

Parking orbits can be employed to extend the launch windows from

the order of minutes to hours. g*

plane is only slightly larger than the

latitude i, of the launch site. Further, 7 —
L | | ——/leﬁ@
suppose that the interceptor is launched | : Orbi

. ) Equaton
in a close orbit. That is, only a sméal

angle change is required for rendevous.
Let [Xi.denote the required difference
in the inclination of the orbital plane.
It cen be demonstrated that

sin iL cos iy - sin Z& i

cos i, sin i

21. cos 6 = .
L 0 Figure 7
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Rendezvous Problems 9.
Example:

If i = 28° (Cape Canaveral)

iO ZX i =)

30° 2° 32.6°
30.4 2.4 36.0
31.0 3.0 39.5

Next consider two types of transfer orbits:

Case a: Transfer apogee at target height (Gemini Program Maneuver)

Férﬁéﬂ_”‘;

A chasing orbit is obtained by //7’
launching a transfer such that the
apogee is tangent to the target's
orbit. Thus the ferry or interceptor
gains on the target during each revolu-
tion until a constellation is attained
for which a single small impluse is
sufficient to effect the rendezvous.

Let: © = angular difference La“né'

) = number of revolutions St
required to overcome ©
deficiency Figure 8

Hohmann - type Transfer

One can verify that

21 Or 1 _o
" r T3360)
o) l2i1.= 1l j*)
TV, 3 360
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Rendezvous Problems 10.
vhere VO is the orbital speed.

Example:

If o = 20°

=1

r = 4260,
then ZX r = 315. This cannot be accomplished in one revloution be-
cause ZX r is greater than target altitude, here considered to be

300 s.m. Therefore, let ]/ = 2, and then ZX r = 158 miles and
AV = 213 ft/sec.

Case b: Parking orbit .
~_/Hohmann 4’““3’/
AN

For an intermediary parking
orbit; 21. is modified to

Ax

T

'

o &b‘ W 3

oit\(

o
360 7/ = 3/H)

23. = %%

Thus the basic technigue in
the use of chasing or parking or-
bits is to -launch the ferry any .
time it is ready during the time f‘\%f“ygt o bt
interval the launch site is close //Figure 9
to the orbital plane of the target,

Figure 7. From this figure and the table relating ZXi and ©, this
may be in the interval of several successive orbital passes. Any
geocentric angular deficiency that the ferry may have is made up
by use of the chasing or parking orbit. It is seen that the holding

back for subsequent addition of a rendezvous velocity increment ZX VR

allows this type rendezvous to be made at substantially the same charac-
teristic velocity increment as would be involved in a direct ascent ren-
dezvous. These indirect schemes provide for launch windows up to 3-5

hours, instead of minutes.
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Rendezvous Problems 11.
Terminal Phase
Terminal phase starté when ferry is about 50 mile; from the target.
Two types of terminal maneuvers are usually considered.

(1) Proportional navigation: maintain line-of-sight fixed in

inertial space; or, maeintein zero angular rate. o
rudezvous station.

(11) Orbital mechanics: compute coast or-
bits of target and ferry to determine if they

intersect. If no intersection, compute required 5% )
change in ferry orbit to produce orbit inter- Figure 10
section.

(a2) Terminal Guidance

The terminal guidance equations for a variety

Figure 11
of assumed models are given in Table 1. As an

example, consider the equations in rotating
rectangular coordinates for amodelhaving a spherical earth, circuler

target orbit, "zero-order" gravity. The equations of motion are
l'_ ve . Tx
24, -2Wy = -
X =-2Wy m
2 T
y+2&)i-3(}k)y=;n-x

LXd

z+L/Oz=——z-
m

n

Assume no thrust, Tx = Ty = TZ = 0, then the solutions to 2k. are

2y X
0 . 0
25. x = (xo + TS-) + (-'3xo + 6 ube)t - 2(3yo -275) sin Wt -

)’O
2-(7)- cos W t,
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Rendezvous Problems

L4
. L

k e e Yo

= - D - + —

26. y (YO 2w)+( 3y * c,o) cos Wt + = sin W,
27. 2z = 8y sin Wt + b1 cos W t,

where X, :'co, Yo :}O are the initial conditions.

The general relative motion
seen be the ferry in these coordi-

nates 1s shown in Figure 12. The

ellipse is centered at the target

and has the following parameters:

= - 3% w
28. v 3xo+6 Yo
y. 3
- 0 Figure 12
X, =% Y2
}EO
Ve = hyb 2*63'
a=2b

.

Yo 2 iO 21 %
b= [(-—@-) + (37 - 258 ] :

Suppose that v = Y, = 0; this implies that

29. XO =2 (A)yo,

vhich is the condition for which the
orbital period of the transfer orbit
is equal to that of the target.

,\\

[/
\

Figure 13
If
30. xo = wao
. w X4
yO 2 2
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Rendezvous Problems 13.

we have the situation illustrated in Figure 13, in which the ellipse is

centered about the target.

If the target is itself in elliptical motion, it can be shown

that the same form of terminal equations apply to the relative motion.
(b) Two Impulse Terminal Phase - Orbital Mechanics Scheme

Let W/27T be the period

of the target end t denote the //ﬂ/ B 5;>\£ib
—& @

time interval required to effect
a rendezvous. Figures 15 and 16
illustrate the effect of the para-

meters required for a rendezvous. Figure 1k4
28 6
. W= - = 7 - - — -
I I
l I
qo° - — -
B
1.7 | |
g |
0.8 d0 | |
| 1
o1 02 P 0 o 0.5 1.0
Figure 15
w *r
31. p= -E?ff— » period ratio of the orbits,
w = angular rate of orbit
v o= 6 on.
Example:

If the altitude h ~ 200 miles, W =~ 0.0011k.

For ’Eo = 5000 ft.
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Rendezvous Problems

14.

If B2, v =~ 10 ft/sec to complete a rendezvous in & time

tr = 10 minutes.

(1) rotating axis system

P
e

(11) 1inertial fixed system

1

3
4)

5
Ferry Behind Space Staticen

(c) Proporticnel Navigation

Let R be the line-of-sight
distance between the station and
the vehicle. For proportional
navigation, an intercept occurs if

32. R2 = 2aR

& = acceleration.

Y

rotating exes

N
NP

Sixed axes

sPace station

station

ey

Figure 16
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Rendezvous Problems

One maneuver for "braking" into

& rendezvous is shown in Figure
17. A thrust is applied at the
“on" line and removed at the "off"
line. The vehicle then coasts
until the "on" line is again met.
The rendezvous is then made by

"oraking" in this stepwise fashion.

Mission Analysis

15.

R

Figure 17

ON LINE
A,

Mission analysis is used for booster design, or specifying the

rocket thrust cepabilities. As an example of mission design, con-

sider a comparison of two types of lunar mission profiles:

(1) direct ascent

(ii) direct ascent with rendezvous in parking orbit about moon

The basic rocket equation can be written as

m

0 Av

. mEey =K
u=Ig
I = specific impulse

thbad

<3

———

Consider the vehicle configuration of Figure 18.

Apply 32a. to obtain

i > 4?Lf;

BOCS\‘ (U

Vﬂb ]

Figure 18

stort

a,



Rendezvous Problems 16.

+
m mb _

33. =K
m, + € m ?

where €mb = burn out weight of booster.

Solve for

K-1
3k. mbnmmpsmp.

The required total weight is then

1- € )K
5. my = m, ¢ my = Gy - Ay

(a) Direct Ascent to Moon and Retwrn

™M

Z\

A m

The sequence is

(1) Land on moon by meens of ms; Av3 is the required velocity

increment.

(ii) From the moon's surface, launch m, to Barth return, AV,J, is

the velocity increment.
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Rendezvous Problems 17.

Using the preceding equations, the mass that must be used to es-
cape the Earth is

36. M, = R3 (mT + m3) 3 mp=Rm = R3 (Rb'mc + m3)
Typical velocity increments are:

AV3 = 10,640 ft/sec

ZXVA = 10,330 ft/sec.

(v) Lunar Rendezvous

The mission sequence is (Y\:(, ,
(s

(1) Decelerate the vehicle into
a moon orbit; Avl

Figure 20

(ii) Descend to the moon with Mg, ascend to rendezvous; AVd, A Va.

(111) Return to Earth; AVQ

One finds

37. m= Ra mf,

38. m =R, (m + ms) = Ry (Ra m, + xns).
It can be verified thet the mass, m,, that escapes from the Earth is

'L
39- m, =R, (ﬁg +m).



Rendezvous Problems 18.

Typical velocity increments are:

6800 ft/sec

AVe
[V, = 6800
AV,
Av,,

3530
Av, + Av, = 1370.

It is interesting to compare the two types of lunar profile missions.

For a direct ascent with typical values

Lo. Me = 10 m, + 2.745 m

and
L1, m, = 2.435 m, + 8.96 m, + 3.81 m_
42. m = 5.52 m, + 2.35 m .

If m, = 13,000 b, me = 3500, m, = 0; one finds that

M_ = 130,000 1lbs
e

m, = 6l ,000

m = 19,000.

These figures indicate the economy of & lunar rendezvous mission

as compared to a direct ascent.
Rendezvous in Interplanetary Transfer
Rendezvous problems for interplanetary flights are exactly similar

to those already discussed except in the near vicinity of the departing
and destination planets. Figure 21 illustrates the hyperbolic escape
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Rendezvous Problems 19.
orbit in the vicinity of the Earth.

The escape velocity is computed from

b ve e B

or, in equivalent form

where

Vo = circular velocity at height r

vr

= hyperbolic excess veloclty.

o0
V.V
45. tan ¢ = Eéﬁ .
vO

The thrust required for egcape is computed from the Ta

b6, L=T7-V =3 m(fa + rgég) - 7&?—,

and
47. 5w=Fr8r+Fgr36.

The equations of motion for & thrusting escape are

ve D umz"_

mr
49. 16 + o1 = AB IO
m V
. .o 1
V= (22 + r26°)2

? 4n9



Rendezvous Problems 20.

Instead of a Hohmenn transfer,
a faster orbit can be used as shown
in Figure 22. The following table

indicates the characteristics of a Maurs
minimum energy Hohmann transfer to
Mars compared to & possible fast orbit.
Figure 22
Mars Stay Time Trevel Time Total Time Z AV
Hohmenn 460 days 520 days 980 days 36,600 ft/sec
Fast Orbit 30 290 320 76,000

Reference:

J.C. Houbolt, "Problems and Potentialities of Space Rendezvous,"
Astronautica Acta, Volume VII, Fasc. 5-6, 1961.
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